Select Git revision
Forked from
Per Lindgren / e7020e_2019
Source project has a limited visibility.
bare4.rs 4.92 KiB
//! bare4.rs
//!
//! Access to Peripherals
//!
//! What it covers:
//! - Raw pointers
//! - Volatile read/write
//! - Busses and clocking
//! - GPIO
#![no_std]
#![no_main]
extern crate panic_halt;
extern crate cortex_m;
use cortex_m_rt::entry;
// Peripheral addresses as constants
#[rustfmt::skip]
mod address {
pub const PERIPH_BASE: u32 = 0x40000000; // Seen in memory map, 2.3
pub const AHB1PERIPH_BASE: u32 = PERIPH_BASE + 0x00020000; // GPIO(A) registers, 8.4
pub const RCC_BASE: u32 = AHB1PERIPH_BASE + 0x3800; // RCC registers, 6.3
pub const RCC_AHB1ENR: u32 = RCC_BASE + 0x30; // 6.3.9
pub const GBPIA_BASE: u32 = AHB1PERIPH_BASE + 0x0000; // 8.4
pub const GPIOA_MODER: u32 = GBPIA_BASE + 0x00; // 8.4.1
pub const GPIOA_BSRR: u32 = GBPIA_BASE + 0x18; // GPIO port bit set/reset register BSRR 8.4.7
}
use address::*;
// see the Reference Manual RM0368 (www.st.com/resource/en/reference_manual/dm00096844.pdf)
// rcc, chapter 6
// gpio, chapter 8
#[inline(always)]
fn read_u32(addr: u32) -> u32 {
// unsafe { core::ptr::read_volatile(addr as *const _) }
core::ptr::read_volatile(addr as *const _)
}
#[inline(always)]
fn write_u32(addr: u32, val: u32) {
unsafe {
core::ptr::write_volatile(addr as *mut _, val);
}
}
fn wait(i: u32) {
for _ in 0..i {
cortex_m::asm::nop(); // no operation (cannot be optimized out)
}
}
#[entry]
fn main() -> ! {
// power on GPIOA, 6.3.9
let r = read_u32(RCC_AHB1ENR); // read
write_u32(RCC_AHB1ENR, r | 1); // set enable
// configure PA5 as output, 8.4.1
let r = read_u32(GPIOA_MODER) & !(0b11 << (5 * 2)); // read and mask
write_u32(GPIOA_MODER, r | 0b01 << (5 * 2)); // set output mode
// and alter the data output through the BSRR register
// this is more efficient as the read register is not needed.
loop {
// set PA5 high, 8.4.7
write_u32(GPIOA_BSRR, 1 << 5); // set bit, output hight (turn on led)
wait(10_000);
// set PA5 low, 8.4.7
write_u32(GPIOA_BSRR, 1 << (5 + 16)); // clear bit, output low (turn off led)
wait(10_000);
}
}
// 0. Build and run the application (debug build).
//
// > cargo build --example bare4
// (or use the vscode build task)
//
// 1. Did you enjoy the blinking?
//
// ** Thouroughly **
//
// Now lookup the data-sheets, and read each section referred,
// 6.3.11, 8.4.1, 8.4.7
//
// Document each low level access *code* by the appropriate section in the
// data sheet.
//
// Commit your answers (bare4_1)
//
// 2. Comment out line 40 and uncomment line 41 (essentially omitting the `unsafe`)
//
// //unsafe { core::ptr::read_volatile(addr as *const _) }
// core::ptr::read_volatile(addr as *const _)
//
// What was the error message and explain why.
//
// ** Compiler error E0133: "call to unsafe function is unsafe ..."
// Because read_volatile is defined as unsafe. **
//
// Digging a bit deeper, why do you think `read_volatile` is declared `unsafe`.
// (https://doc.rust-lang.org/core/ptr/fn.read_volatile.html, for some food for thought )
//
// ** The section on safety reads that the behaviour is undefined if the parameter is not valid.
// The passed parameter must not be unaligned nor out of bounds. Undefined behaviour is unsafe! **
//
// Commit your answers (bare4_2)
//
// 3. Volatile read/writes are explicit *volatile operations* in Rust, while in C they
// are declared at type level (i.e., access to varibles declared volatile amounts to
// volatile reads/and writes).
//
// Both C and Rust (even more) allows code optimization to re-order operations, as long
// as data dependencies are preserved.
//
// Why is it important that ordering of volatile operations are ensured by the compiler?
//
// ** If read/write instructions are reordered, the consequences are undefined, since
// what was intended to be read might not be there. And since peripherals' configurations
// depend on the contents of registers that are read from/written to, configurations might
// go wrong. **
//
// Give an example in the above code, where reordering might make things go horribly wrong
// (hint, accessing a peripheral not being powered...)
//
// ** We set port A to general purpose output mode. There is undefined, unintended behaviour
// if we write to the port bits without enabling it. **
//
// Without the non-reording proprety of `write_volatile/read_volatile` could that happen in theory
// (argue from the point of data dependencies).
//
// ** If we read from a register to apply a mask on it, it most probably needs to remain that value
// before writing the masked value to it, otherwise the masked value is not accurate. If read/writes
// are reordered during many reads and writes (e.g. during configuration), the configuration might end
// up faulty. **
//
// Commit your answers (bare4_3)