Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
R
rtic_f4xx_nucleo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ruben Asplund
rtic_f4xx_nucleo
Commits
6845790a
Commit
6845790a
authored
4 years ago
by
Per Lindgren
Browse files
Options
Downloads
Patches
Plain Diff
rtt_timing
parent
4e580b2b
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/rtt_simple.rs
+43
-0
43 additions, 0 deletions
examples/rtt_simple.rs
examples/rtt_timing.rs
+319
-0
319 additions, 0 deletions
examples/rtt_timing.rs
with
362 additions
and
0 deletions
examples/rtt_simple.rs
0 → 100644
+
43
−
0
View file @
6845790a
//! examples/rtt_simple.rs
#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]
use
panic_rtt_target
as
_
;
use
rtt_target
::{
rprintln
,
rtt_init_print
};
use
stm32f4
;
#[rtic::app(device
=
stm32f4)]
const
APP
:
()
=
{
#[init]
fn
init
(
_cx
:
init
::
Context
)
{
rtt_init_print!
();
rprintln!
(
"init"
);
}
#[idle]
fn
idle
(
_cx
:
idle
::
Context
)
->
!
{
rprintln!
(
"idle"
);
loop
{
continue
;
}
}
};
// > cargo run rtt_simple
// Compiling app v0.1.0 (/home/pln/courses/e7020e/app)
// Finished dev [unoptimized + debuginfo] target(s) in 0.15s
// Running `probe-run --chip STM32F411RETx target/thumbv7em-none-eabi/debug/examples/rtt_simple`
// flashing program ..
// DONE
// resetting device
// init
// idle
//
// > [Ctrl-C]
// stack backtrace:
// 0: 0x0800031a - rtt_simple::idle
// 1: 0x0800036c - main
// 2: 0x080001da - Reset
This diff is collapsed.
Click to expand it.
examples/rtt_timing.rs
0 → 100644
+
319
−
0
View file @
6845790a
//! examples/rtt_timing.rs
// #![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]
use
cortex_m
::{
asm
,
peripheral
::
DWT
};
use
panic_rtt_target
as
_
;
use
rtt_target
::{
rprintln
,
rtt_init_print
};
use
stm32f4
;
#[rtic::app(device
=
stm32f4)]
const
APP
:
()
=
{
#[init]
fn
init
(
mut
cx
:
init
::
Context
)
{
rtt_init_print!
();
rprintln!
(
"init"
);
// Initialize (enable) the monotonic timer (CYCCNT)
cx
.core.DCB
.enable_trace
();
cx
.core.DWT
.enable_cycle_counter
();
rprintln!
(
"start timed_loop"
);
let
(
start
,
end
)
=
timed_loop
();
rprintln!
(
"start {}, end {}, diff {}"
,
start
,
end
,
end
.wrapping_sub
(
start
)
);
}
#[idle]
fn
idle
(
_cx
:
idle
::
Context
)
->
!
{
rprintln!
(
"idle"
);
loop
{
continue
;
}
}
};
// Forbid inlining and keeping name (symbol) readable.
#[inline(never)]
#[no_mangle]
fn
timed_loop
()
->
(
u32
,
u32
)
{
let
start
=
DWT
::
get_cycle_count
();
for
_
in
0
..
10000
{
asm
::
nop
();
}
let
end
=
DWT
::
get_cycle_count
();
(
start
,
end
)
}
// We can measure execution time using the built in cycle counter,
// a wrapping 32 bit timer.
//
// `DWT::get_cycle_count()` reads the current value.
//
// ------------------------------------------------------------------------
// Exercises:
//
// A.1) What is the cycle count for the loop?
// > cargo run --example rtt_timing
//
// [Your answer here]
//
// A.2) How many cycles per iteration?
//
// [Your answer here]
//
// ------------------------------------------------------------------------
// Now try a release (optimized build, see `Cargo.toml` for build options).
// B.1) What is the cycle count for the loop?
// > cargo run --example rtt_timing --release
//
// [Your answer here]
//
// B.2) How many cycles per iteration?
//
// [Your answer here]
//
// What is the speedup (A/B)?
//
// [Your answer here]
//
// Why do you think it differs that much?
//
// [Your answer here]
//
// ------------------------------------------------------------------------
// In the loop there is just a single assembly instruction (nop).
// However, the API for "inline assembly" is not yet stabilized, thus
// we have to call an "external" functions that implements the assembly.
//
// We can switch to the "nightly" channel (which allows experimental features).
//
// > rustup override set nightly
// info: using existing install for 'nightly-x86_64-unknown-linux-gnu'
// info: override toolchain for '/home/pln/courses/e7020e/app' set to 'nightly-x86_64-unknown-linux-gnu'
//
// nightly-x86_64-unknown-linux-gnu unchanged - rustc 1.49.0-nightly (cf9cf7c92 2020-11-10)
//
// > rustup target add thumbv7em-none-eabi
// (only needed first time)
//
// Now try a release (optimized build, see `Cargo.toml` for build options).
// C.1) What is the cycle count for the loop?
// > cargo run --example rtt_timing --release
//
// [Your answer here]
//
// C.2) How many cycles per iteration?
//
// [Your answer here]
//
// What is the speedup (A/C)?
//
// [Your answer here]
//
// ------------------------------------------------------------------------
// D) Now lets have a closer look at the generated assembly.
//
// > cargo objdump --example rtt_timing --release --features nightly -- --disassemble > rtt_timing.objdump
//
// Open the file in you editor and search for the `timed_loop`.
//
// [Assembly for function here]
//
// Locate the loop body, and verify that it makes sense
// based on the information from the technical documentation:
//
// https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
//
//
// ------------------------------------------------------------------------
// E) Now we shall take detailed control over the debugging.
//
// Alter the .cargo/config
// uncomment:
// runner = "arm-none-eabi-gdb -q -x openocd.gdb"
// or (if under ubuntu)
// runner = "gdb-multiarch -q -x openocd.gdb"
//
// comment:
// # runner = "probe-run --chip STM32F411RETx"
//
// Remember to save the file!
//
// In a separate terminal start `openocd`.
// > openocd -f openocd.cfg
// And in the main terminal run:
// > cargo run --example rtt_timing --release --features nightly
// ...
// halted: PC: 0x0800019a
// 0x0800019a in cortex_m_rt::Reset () at /home/pln/.cargo/registry/src/github.com-1ecc6299db9ec823/cortex-m-rt-0.6.13/src/lib.rs:497
// 497 pub unsafe extern "C" fn Reset() -> ! {
//
// Now add a breakpoint at `timed_loop`.
// (gdb) break timed_loop
// Breakpoint 5 at 0x800023e: file examples/rtt_timing.rs, line 45.
//
// Now we can continue (first break will be at `init`)
// (gdb) continue
// Breakpoint 4, cortex_m::interrupt::disable () at /home/pln/.cargo/registry/src/github.com-1ecc6299db9ec823/cortex-m-0.6.4/src/interrupt.rs:13
// llvm_asm!("cpsid i" ::: "memory" : "volatile");
// (`init` in RTIC runs with interrupts disabled)
// (gdb) continue
// Breakpoint 5, core::ptr::read_volatile<u32> (src=<optimized out>) at /home/pln/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/ptr/mod.rs:1052
// unsafe { intrinsics::volatile_load(src) }
//
// Now we are inside the `timed_loop`.
// disassemble
// Dump of assembler code for function _ZN10rtt_timing10timed_loop17h4a445e5f592f3304E:
// 0x08000232 <+0>: movw r1, #4100 ; 0x1004
// 0x08000236 <+4>: movw r2, #10000 ; 0x2710
// 0x0800023a <+8>: movt r1, #57344 ; 0xe000
// => 0x0800023e <+12>: ldr r0, [r1, #0]
// 0x08000240 <+14>: subs r2, #1
// 0x08000242 <+16>: nop
// 0x08000244 <+18>: bne.n 0x8000240 <rtt_timing::timed_loop+14>
// 0x08000246 <+20>: ldr r1, [r1, #0]
// 0x08000248 <+22>: bx lr
//
// (breakpoints can be a bit "off" for release builds, here it
// put the breakpoint not at the function entry but rather at the
// first Rust line (the load done by `DWT::get_cycle_count()`)).
//
// Is there a function call to the DWT::get_cycle_count(),
// if not can you explain what has happened here?
// In particular, what is the content of r1?
//
// Confer to the documentation:
// https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-Programmers-Model
//
// [Your answer here]
//
// Now check your answer by dumping the registers
// (gdb) info registers
//
// [Register dump here]
//
// We can now set a breakpoint exactly at the `nop`.
//
// (gdb) break *0x8000240
//
// And continue execution to the breakpoint:
// (gdb) continue
//
// (gdb) disassemble
// 0x08000232 <+0>: movw r1, #4100 ; 0x1004
// 0x08000236 <+4>: movw r2, #10000 ; 0x2710
// 0x0800023a <+8>: movt r1, #57344 ; 0xe000
// 0x0800023e <+12>: ldr r0, [r1, #0]
// 0x08000240 <+14>: subs r2, #1
// => 0x08000242 <+16>: nop
// 0x08000244 <+18>: bne.n 0x8000240 <rtt_timing::timed_loop+14>
// 0x08000246 <+20>: ldr r1, [r1, #0]
// 0x08000248 <+22>: bx lr
//
// You can inspect the memory directly.
// What is the current value of the cycle counter?
//
// (gdb) x 0xe0001004
//
// [Your answer here]
//
// Now, let's execute one iteration:
// (gdb) continue
//
// What is now the current value of the cycle counter?
//
// [Your answer here]
//
// By how much does the cycle counter increase for each iteration?
//
// [Your answer here]
//
// ------------------------------------------------------------------------
// F) Reseting the cycle counter
// You can restart the program by a "soft reset".
// (gdb) monitor reset init
// "monitor" the command to be sent to `openocd`
// "reset init" will reset the MCU and run a the "init" hook
// in the currently loaded `openocd` configuration.
//
// Now repeat the procedure from E) and check the value of
// the cycle counter.
//
// You will find that its not starting over but continuing.
// This may be a bit confusing (we like deterministic behavior).
//
// Look in the documentation for `cortex_m`
// https://docs.rs/cortex-m/0.6.4/cortex_m/peripheral/dwt/struct.RegisterBlock.html
//
// This is a "raw" API to the underlying hardware.
// Under the hood, it uses `volatile_register`
// https://docs.rs/volatile-register/0.2.0/volatile_register/struct.RW.html
//
// for which write is marked "unsafe".
//
// Figure out the way to access the register through:
// `cx. cx.core.DWT.cyccnt.write(0)`.
// And add that to the code just before calling `timed_loop`.
//
// (Remember to comment out #![deny(unsafe_code)])
//
// Now run re-run the procedure from E)
//
// What is the initial value of the cycle counter
// (when hitting the `timed_loop` breakpoint)?
//
// [Your answer here]
//
// ------------------------------------------------------------------------
// F) Finally some statics
// For embedded it is often/typically crucial to reduce overhead,
// - code footprint (flash memory)
// - memory footprint (sram memory)
// - execution OH (speed/power consumption)
//
// We have already looked execution overhead and can conclude
// Rust to do an excellent job.
//
// The ram requirement for the application amounts only to
// to the buffers (allocated for RTT), and the stack
// for the functions (which is in this case 0 for the `timed_loop`).
//
// Let's have a look at the code footprint (flash).
//
// > cargo bloat -n 100 --example rtt_timing --release --features nightly
// ...
// 0.0% 0.4% 24B [Unknown] timed_loop
// ...
//
// That is, the timed loop takes only 24 bytes of memory!
//
// > cargo size --example rtt_timing --release --features nightly
// Finished release [optimized + debuginfo] target(s) in 0.03s
// text data bss dec hex filename
// 6876 0 1084 7960 1f18 rtt_timing
//
// And the code overall less than 8k of flash.
//
// Your assignment now is to get this down, by identifying the
// memory hogs. You can remove the tracing, replace the panic
// handler by `panic_halt`, but besides that it should still
// measure time (debugging in gdb of `timed_loop` must still work).
//
// ------------------------------------------------------------------------
// Summary:
// What are the learning outcomes.
//
// - Rust generates really bad code in debug build.
// - Rust generates really, really, really good code in release build.
// Zero-cost abstractions are for real.
//
// - RTIC is extremely light weight (zero-cost in release build).
// - RTIC applications are easy to
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment