Skip to content
Snippets Groups Projects
Select Git revision
  • ad53b3f70eac6e696e5d2d02c8584893f4543610
  • master default protected
2 results

_2_led.rs

Blame
  • main.rs 6.02 KiB
    mod common;
    use common::*;
    
    fn main() {
        let t1 = Task {
            id: "T1".to_string(),
            prio: 1,
            deadline: 100,
            inter_arrival: 100,
            trace: Trace {
                id: "T1".to_string(),
                start: 0,
                end: 10,
                inner: vec![],
            },
        };
    
        let t2 = Task {
            id: "T2".to_string(),
            prio: 2,
            deadline: 200,
            inter_arrival: 200,
            trace: Trace {
                id: "T2".to_string(),
                start: 0,
                end: 30,
                inner: vec![
                    Trace {
                        id: "R1".to_string(),
                        start: 10,
                        end: 20,
                        inner: vec![Trace {
                            id: "R2".to_string(),
                            start: 12,
                            end: 16,
                            inner: vec![],
                        }],
                    },
                    Trace {
                        id: "R1".to_string(),
                        start: 22,
                        end: 28,
                        inner: vec![],
                    },
                ],
            },
        };
    
        let t3 = Task {
            id: "T3".to_string(),
            prio: 3,
            deadline: 50,
            inter_arrival: 50,
            trace: Trace {
                id: "T3".to_string(),
                start: 0,
                end: 30,
                inner: vec![Trace {
                    id: "R2".to_string(),
                    start: 10,
                    end: 20,
                    inner: vec![],
                }],
            },
        };
    
        // builds a vector of tasks t1, t2, t3
        let tasks: Tasks = vec![t1, t2, t3];
    
        println!("tasks {:?}", &tasks);
        println!("tot_util {}", total_load_factor(&tasks));
    
        let (ip, tr) = pre_analysis(&tasks);
        println!("ip: {:?}", ip);
        println!("tr: {:?}", tr);
    
        for t in &tasks {
            response_time(t, &tasks, &ip, &tr);
        }
    }
    
    
    /*
     * Calculates the total load factor(Ltot).
     * Ltot
     * 
     * Note: We can compute the total CPU request (or load factor), as Ltot = sum(L(T)), T being the set of tasks.
     */
    fn total_load_factor(tasks: &Tasks) -> f32 {
        let mut ltot: f32 = 0.0;
        for t in tasks {
            ltot += cpu_load(t);
        }
        return ltot;
    }
    
    
    /*
     * Calculates the cpu load of a task(L(t) where t is a task).
     * L(t)
     *
     * Note: Each task t has a WCET C(t) and given (assumed) inter-arrival time A(t). The CPU request (or load) inferred by a task is L(t) = C(t)/A(t). Ask yourself, what is the consequence of C(t) > A(t)? 
     * Answer: If C(t) > A(t) then the cpu load of task t is more then the available cpu power in the
     * worst case. And the task t will not be able to finish in time in the worst case.
     */
    fn cpu_load(task: &Task) -> f32 {
        return (wcet(&task.trace) as f32) / (task.inter_arrival as f32)
    }
    
    
    /*
     * Worst case execution time(WCET) of a task t(C(t)).
     * C(t)
     */
    fn wcet(trace: &Trace) -> u32 {
        return trace.end.wrapping_sub(trace.start); 
    }
    
    
    /*
     * Calculates the response time of task(R(t)).
     * R(t)
     *
     * Note: * R(t) = B(t) + C(t) + I(t), where
     *          - B(t) is the blocking time for task t, and
     *          - I(t) is the interference (preemptions) to task t
     */
    fn response_time(task: &Task, tasks: &Tasks, ip: &IdPrio, tr: &TaskResources) -> u32 {
        let r: u32 = block_time(task, tasks, ip, tr) + wcet(&task.trace) + interference_time(task, tasks);
        println!("response_time {:?}", r);
        return r;
    }
    
    
    /*
     * Calculates the blocking time for task t(B(t)).
     * B(t)
     *
     * Note: B(t) = max(C(l_r)), where P(l) < P(t), π(l_r) >= P(t)
     */
    fn block_time(task: &Task, tasks: &Tasks, ip: &IdPrio, tr: &TaskResources) -> u32 {
        /*
         * Helper function for finding the trace of a resource using only the id an a trace.
         */
        fn find_res_tr<'a>(res_id: &String, trace: &'a Trace) -> Option<&'a Trace> {
            if trace.id == *res_id {
                return Some(trace);
            } else {
                for tr in &trace.inner {
                    match find_res_tr(res_id, tr) {
                        Some(val) => return Some(val),
                        None => (),
                    }
                }
            }
            return None;
        }
    
    
        // Find all lower priority tasks
        let mut lower_prio: Vec<&Task> = vec!();
        for t in tasks {
            if t.prio < task.prio {
                lower_prio.push(t);
            }
        }
    
        //println!("prio {:?}", task.prio);
        //println!("lower_prio {:?}", lower_prio);
    
        // Find all resources that will block the task(resources with a higher of equal priority) from
        // the resources that the lower priority tasks use.
        let mut block_res: Vec<&Trace> = vec!();
        for lpt in lower_prio {
            match tr.get(&lpt.id) {
                Some(resources) =>{
                    for r in resources {
                        if *ip.get(r).unwrap() >= task.prio {
                            block_res.push(find_res_tr(r, &lpt.trace).unwrap());
                        }
                    }
                },
                None => (),
            }; 
        }
        
        //println!("block_res {:?}", block_res);
    
        // Calculate the max wcet of the list of blocking resource traces.
        let mut block_time: u32 = 0;
        for tr in block_res {
            let wcet = wcet(tr);
            if wcet > block_time {
                block_time = wcet;
            }
        }
        
        println!("block time {:?}", block_time);
    
        return block_time;
    }
    
    
    
    /*
     * Calculates the interference (preemptions) to task t(I(t)).
     * I(t)
     *
     * Note:    I(t) = sum(C(h) * ceiling(Bp(t)/A(h))), forall tasks h, P(h) > P(t), where
     *          Bp(t) is the busy-period
     */
    fn interference_time(task: &Task, tasks: &Tasks) -> u32 {
        let mut interference: u32 = 0;
        for t in tasks {
            if t.prio > task.prio {
                interference += wcet(&t.trace) * (((busy_period(t) as f32) / (t.inter_arrival as f32)).ceil() as u32);
            }
        } 
    
        println!("interference_time {:?}", interference);
        return interference;
    }
    
    
    /*
     * Caclulates the busy period of task t(Bp(t)).
     * Bp(t)
     *
     * Note: We can over approximate the busy period Bp(i) = D(i) (assuming the worst allowed busy-period).
     * D(i) is the deadline of task i.
     */
    fn busy_period(task: &Task) -> u32 {
       return task.deadline;
    }