Skip to content
Snippets Groups Projects
Select Git revision
  • ad8bf117b87d4f5054fd57ab7802ec99e95bf4fa
  • master default protected
2 results

rtt_rtic_i2c.rs

Blame
  • rtt_rtic_i2c.rs 8.86 KiB
    //! cargo run --examples rtt-pwm
    
    #![deny(unsafe_code)]
    // #![deny(warnings)]
    #![no_main]
    #![no_std]
    
    use cortex_m::asm::delay;
    use panic_halt as _;
    use rtt_target::{rprintln, rtt_init_print};
    
    use stm32f4xx_hal::{
        gpio::{
            gpiob::{PB8, PB9},
            gpioc::PC13,
            AlternateOD, Edge, ExtiPin, Input, PullUp, Speed, AF4,
        },
        i2c::I2c,
        prelude::*,
        stm32::I2C1,
    };
    
    #[rtic::app(device = stm32f4xx_hal::stm32, peripherals = true)]
    const APP: () = {
        #[init]
        fn init(cx: init::Context) {
            rtt_init_print!();
            rprintln!("init");
            let dp = cx.device;
    
            // Set up the system clock, 48MHz
            let rcc = dp.RCC.constrain();
            // let clocks = rcc.cfgr.sysclk(48.mhz()).freeze();
            let clocks = rcc.cfgr.freeze();
            // let clocks = rcc
            //     .cfgr
            //     .hclk(48.mhz())
            //     .sysclk(48.mhz())
            //     .pclk1(24.mhz())
            //     .pclk2(24.mhz())
            //     .freeze();
    
            // Set up I2C.
            let gpiob = dp.GPIOB.split();
            let scl = gpiob.pb8.into_alternate_af4().set_open_drain();
            let sda = gpiob.pb9.into_alternate_af4().set_open_drain();
            let mut i2c = I2c::i2c1(dp.I2C1, (scl, sda), 400.khz(), clocks);
    
            rprintln!("here");
    
            // configure
            // 7:6 -     reserved
            // 5   ORDER logic 0, the MSB of the data word is transmitted first.
            //           logic 1, the LSB of the data word is transmitted first.
            // 4   -     reserved
            // 3:3 M1:M0 Mode selection
            //           00 - SPICLK LOW when idle; data clocked in on leading edge (CPOL = 0, CPHA = 0)
            //           01 - SPICLK LOW when idle; data clocked in on trailing edge (CPOL = 0, CPHA = 1)
            //           10 - SPICLK HIGH when idle; data clocked in on trailing edge (CPOL = 1, CPHA = 0)
            //           11 - SPICLK HIGH when idle; data clocked in on leading edge (CPOL = 1, CPHA = 1)
            // 1:0 F1:F0 SPI clock rate
            //           00 - 1843 kHz
            //           01 - 461 kHz
            //           10 - 115 kHz
            //           11 - 58 kHz
    
            let i2c_addr = 0x50 >> 1;
            let i2c_command_conf = 0xF0;
    
            let i2c_conf_reg = (0b0 << 5) /* MSB First */ |
                               (0b11 << 2) /* Mode 3 */ |
                               (0b00 << 0) /* 1843 kHz */;
            // (0b01 << 0) /* 461 kHz */;
    
            let x = i2c
                .write(i2c_addr, &[i2c_command_conf, i2c_conf_reg])
                .unwrap();
    
            rprintln!("configure {:?}", x);
            // cortex_m::asm::delay(10_000_000);
    
            // write to spi with CS0 (command 01..0f)
            let i2c_command_cs0 = 0x01; // bit 0 set
            let pmw_command_product_id = 0x00;
            let pmw_command_product_version = 0x01;
    
            let x = i2c.write(i2c_addr, &[i2c_command_cs0, pmw_command_product_id, 0]);
            rprintln!("request product_id {:?}", x);
            //  cortex_m::asm::delay(10_000_000);
    
            // read the result
            let mut buff = [0, 0, 0, 0];
            rprintln!("buff {:?}", buff);
    
            let x = i2c.read(i2c_addr, &mut buff);
            // read the buffer
            cortex_m::asm::delay(100_000);
            rprintln!("data received {:?}", x);
            rprintln!("data received {:?}", buff);
    
            let x = i2c.write(i2c_addr, &[i2c_command_cs0, pmw_command_product_version, 0]);
            rprintln!("request product_version {:?}", x);
            //  cortex_m::asm::delay(10_000_000);
    
            // read the result
            let mut buff = [0, 0, 0, 0];
            rprintln!("buff {:?}", buff);
    
            let x = i2c.read(i2c_addr, &mut buff);
            // read the buffer
            cortex_m::asm::delay(100_000);
            rprintln!("data received {:?}", x);
            rprintln!("data received {:?}", buff);
    
            // // test of the abstractions
    
            // use embedded_hal::spi::MODE_3;
            // use SC18IS602::{Order, Speed, SH18IS602};
            // let mut spi_emu =
            //     SH18IS602::new(i2c, 0, Order::MsbFirst, MODE_3, Speed::Speed1843kHz, false);
    
            // rprintln!("spi_emu initialized");
    
            // let mut id_request = [0x00];
            // spi_emu.transfer(&mut id_request).unwrap();
            // rprintln!("id_request {:?}", id_request);
    
            // let mut id_request = [0x00];
            // spi_emu.transfer(&mut id_request).unwrap();
            // rprintln!("response {:?}", id_request);
        }
    
        #[idle]
        fn idle(_cx: idle::Context) -> ! {
            rprintln!("idle");
            loop {
                continue;
            }
        }
    };
    
    // SC18IS602
    mod SC18IS602 {
        enum Function {
            SpiReadWrite = 0x00, // 0F..01, where lowest 4 bits are the CSs
            SpiConfigure = 0xF0,
            ClearInterrupt = 0xF1,
            IdleMode = 0xF2,
            GpioWrite = 0xF4,
            GpioRead = 0xF5,
            GpioEnable = 0xF6,
            GpioConfigure = 0xF7,
        }
    
        impl Function {
            fn id(self) -> u8 {
                self as u8
            }
        }
    
        pub enum Speed {
            Speed1843kHz = 0b00,
            Speed461kHz = 0b01,
            Speed115kHz = 0b10,
            Speed58kHz = 0b11,
        }
    
        pub enum Order {
            MsbFirst = 0b0,
            MsbLast = 0b1,
        }
    
        enum GpioMode {
            QuasiBiDirectional = 0b00,
            PushPull = 0b01,
            InputOnly = 0b10,
            OpenDrain = 0b11,
        }
    
        impl GpioMode {
            fn val(self) -> u8 {
                self as u8
            }
        }
    
        use embedded_hal::{
            blocking::{i2c, spi::Transfer},
            digital::v2::OutputPin,
            spi::Mode,
        };
    
        #[derive(Copy, Clone, Debug)]
        pub enum Error {
            NotConfigured,
        }
    
        pub struct SH18IS602<I2C>
        where
            I2C: i2c::Write + i2c::Read,
        {
            addr: u8,
            cs: bool,
            i2c: I2C,
            // a backing buffer for shadowing SPI transfers
            buff: [u8; 200],
        }
    
        use rtt_target::rprintln;
        use Function::*;
    
        impl<I2C> SH18IS602<I2C>
        where
            I2C: i2c::Write + i2c::Read,
        {
            pub fn new(
                mut i2c: I2C,
                addr: u8,
                order: Order,
                mode: Mode,
                speed: Speed,
                cs: bool,
            ) -> SH18IS602<I2C> {
                let addr = (0x50 + addr) >> 1;
                // set configuration
                let cfg = (order as u8) << 5
                    | (mode.polarity as u8) << 3
                    | (mode.phase as u8) << 2
                    | speed as u8;
    
                i2c.write(addr, &[SpiConfigure.id(), cfg])
                    .map_err(|_| panic!())
                    .ok();
    
                cortex_m::asm::delay(100_000);
    
                if cs {
                    rprintln!("GPIO SS0");
                    // Configure SS0 as GPIO
                    i2c.write(addr, &[GpioEnable.id(), 0x1])
                        .map_err(|_| panic!())
                        .ok();
    
                    // Configure GPIO SS0 as a PushPull Output
                    i2c.write(addr, &[GpioConfigure.id(), GpioMode::PushPull.val()])
                        .map_err(|_| panic!())
                        .ok();
                }
                SH18IS602 {
                    addr,
                    cs,
                    i2c,
                    buff: [0; 200],
                }
            }
        }
    
        impl<I2C> Transfer<u8> for SH18IS602<I2C>
        where
            I2C: i2c::Write + i2c::Read,
        {
            type Error = Error;
            // transfer limited to 200 bytes maximum
            // will panic! if presented larger buffer
            //
            fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
                // initiate a transfer on SS0
                self.buff[0] = 0x01; // SSO write
                self.buff[1..words.len() + 1].clone_from_slice(words);
                // perform the transaction on words.len() + 1 bytes
                // the actual SPI transfer should be words.len()
    
                rprintln!("write {:?}", &self.buff[0..words.len() + 1]);
    
                self.i2c
                    .write(self.addr, &self.buff[0..words.len() + 1])
                    .map_err(|_| panic!())
                    .ok();
                cortex_m::asm::delay(100_000);
    
                self.i2c.read(self.addr, words).map_err(|_| panic!()).ok();
                cortex_m::asm::delay(100_000);
    
                rprintln!("read {:?}", words);
    
                Ok(words)
            }
        }
    
        impl<I2C> OutputPin for SH18IS602<I2C>
        where
            I2C: i2c::Write + i2c::Read,
        {
            type Error = Error;
    
            fn set_low(&mut self) -> Result<(), Self::Error> {
                if !self.cs {
                    Err(Error::NotConfigured)
                } else {
                    self.i2c
                        .write(self.addr, &[Function::GpioWrite.id(), 0x0])
                        .map_err(|_| panic!())
                        .ok();
                    Ok(())
                }
            }
    
            fn set_high(&mut self) -> Result<(), Self::Error> {
                if !self.cs {
                    Err(Error::NotConfigured)
                } else {
                    self.i2c
                        .write(self.addr, &[Function::GpioWrite.id(), 0x1])
                        .map_err(|_| panic!())
                        .ok();
                    Ok(())
                }
            }
        }
    }