Skip to content
Snippets Groups Projects
Commit 24de0017 authored by Per Lindgren's avatar Per Lindgren
Browse files

bare6 wip

parent 48bb15cc
Branches
No related tags found
No related merge requests found
......@@ -382,6 +382,7 @@
"request": "launch",
"servertype": "openocd",
"name": "bare6 (debug) 64Mhz",
"preLaunchTask": "cargo build --example bare6 --features stm32f4",
"executable": "./target/thumbv7em-none-eabihf/debug/examples/bare6",
"configFiles": [
"interface/stlink.cfg",
......@@ -410,6 +411,7 @@
"request": "launch",
"servertype": "openocd",
"name": "bare6 (debug) 84Mhz",
"preLaunchTask": "cargo build --example bare6 --features stm32f4",
"executable": "./target/thumbv7em-none-eabihf/debug/examples/bare6",
"configFiles": [
"interface/stlink.cfg",
......
......@@ -27,40 +27,36 @@
extern crate panic_halt;
use cortex_m::{iprint, iprintln, peripheral::itm::Stim, peripheral::syst::SystClkSource};
use cortex_m_rt::entry;
use cortex_m_rt::{entry, exception};
// use cortex_m_semihosting::hprintln;
use stm32f4::stm32f411;
use stm32f411::{DWT, GPIOA, NVIC, /* interrupt, Peripherals, Interrupt, ITM, */ RCC};
use stm32f411::{interrupt, Interrupt, DWT, GPIOA, GPIOC, ITM, NVIC, RCC, SYST};
#[entry]
fn main() -> ! {
let p = stm32f411::Peripherals::take().unwrap();
let mut c = stm32f411::CorePeripherals::take().unwrap();
//p.GPIOA.odr.write(|w| w.bits(1));
//let stim = &mut p.
let stim = &mut c.ITM.stim[0];
iprintln!(stim, "Hello, bare6!");
// // let dwt = unsafe { &mut *DWT.get() }; // get the reference to DWD in memory
// // let rcc = unsafe { &mut *RCC.get() }; // get the reference to RCC in memory
// // let gpioa = unsafe { &mut *GPIOA.get() }; // get the reference to GPIOA in memory
// // let gpioc = unsafe { &mut *GPIOC.get() }; // get the reference to GPIOC in memory
// // let flash = unsafe { &mut *FLASH.get() }; // get the reference to FLASH in memory
c.DWT.enable_cycle_counter();
unsafe {
c.DWT.cyccnt.write(0);
}
let t = DWT::get_cycle_count();
iprintln!(stim, "{}", t);
// p.DWT.enable_cycle_counter();
// // clock_out(rcc, gpioc);
// // //clock::set_84_mhz(rcc, flash);
idle(stim, c.DWT, p.RCC, p.GPIOA);
clock_out(&p.RCC, &p.GPIOC);
// clock::set_84_mhz(rcc, flash);
idle(stim, p.RCC, p.GPIOA);
loop {}
}
// // user application
fn idle(stim: &mut Stim, dwt: DWT, rcc: RCC, gpioa: GPIOA) {
fn idle(stim: &mut Stim, rcc: RCC, gpioa: GPIOA) {
iprintln!(stim, "idle");
// power on GPIOA, RM0368 6.3.11
......@@ -69,156 +65,170 @@ fn idle(stim: &mut Stim, dwt: DWT, rcc: RCC, gpioa: GPIOA) {
// configure PA5 as output, RM0368 8.4.1
gpioa.moder.modify(|_, w| w.moder5().bits(1));
// at 16 Mhz, 8000_0000 cycles = period 0.5s
// at 64 Mhz, 8000_0000 cycles = period 0.125s
let cycles = 8000_0000;
// at 16 Mhz, 8_000_000 cycles = period 0.5s
// at 64 Mhz, 4*8_000_000 cycles = period 0.55s
// let cycles = 8_000_000;
let cycles = 4*8_000_000;
loop {
// ipln!("led on");
iprintln!(stim, "on {}", DWT::get_cycle_count());
// set PA5 high, RM0368 8.4.7
gpioa.bsrr.write(|w| w.bs5().set_bit());
wait_cycles(&dwt, cycles);
wait_cycles(cycles);
// ipln!("led off");
iprintln!(stim, "off {}", DWT::get_cycle_count());
// set PA5 low, RM0368 8.4.7
gpioa.bsrr.write(|w| w.br5().set_bit());
wait_cycles(&dwt, cycles);
wait_cycles(cycles);
}
}
// uses the DWT.CYCNT
// doc: ARM trm_100166_0001_00_en.pdf, chapter 9.2
// we use the `cortex-m` abstraction, as re-exported by the stm32f40x
fn wait_cycles(dwt: &DWT, nr_cycles: u32) {
let t = dwt.cyccnt.read().wrapping_add(nr_cycles);
while (dwt.cyccnt.read().wrapping_sub(t) as i32) < 0 {}
fn wait_cycles(nr_cycles: u32) {
let t = DWT::get_cycle_count().wrapping_add(nr_cycles);
while (DWT::get_cycle_count().wrapping_sub(t) as i32) < 0 {}
}
// see the Reference Manual RM0368 (www.st.com/resource/en/reference_manual/dm00096844.pdf)
// rcc, chapter 6
// gpio, chapter 8
// fn clock_out(rcc: &mut RCC, gpioc: &mut GPIOC) {
// // output MCO2 to pin PC9
fn clock_out(rcc: &RCC, gpioc: &GPIOC) {
// output MCO2 to pin PC9
// // mco2 : SYSCLK = 0b00
// // mcopre : divide by 4 = 0b110
// rcc.cfgr
// .modify(|_, w| unsafe { w.mco2().bits(0b00).mco2pre().bits(0b110) });
// mco2 : SYSCLK = 0b00
// mcopre : divide by 4 = 0b110
rcc.cfgr
.modify(|_, w| unsafe { w.mco2().bits(0b00).mco2pre().bits(0b110) });
// // power on GPIOC, RM0368 6.3.11
// rcc.ahb1enr.modify(|_, w| w.gpiocen().set_bit());
// power on GPIOC, RM0368 6.3.11
rcc.ahb1enr.modify(|_, w| w.gpiocen().set_bit());
// // MCO_2 alternate function AF0, STM32F401xD STM32F401xE data sheet
// // table 9
// // AF0, gpioc reset value = AF0
// MCO_2 alternate function AF0, STM32F401xD STM32F401xE data sheet
// table 9
// AF0, gpioc reset value = AF0
// // configure PC9 as alternate function 0b10, RM0368 6.2.10
// gpioc.moder.modify(|_, w| unsafe { w.moder9().bits(0b10) });
// configure PC9 as alternate function 0b10, RM0368 6.2.10
gpioc.moder.modify(|_, w| w.moder9().bits(0b10) );
// // otyper reset state push/pull, in reset state (don't need to change)
// otyper reset state push/pull, in reset state (don't need to change)
// // ospeedr 0b11 = high speed
// gpioc
// .ospeedr
// .modify(|_, w| unsafe { w.ospeedr9().bits(0b11) });
// }
// ospeedr 0b11 = high speed
gpioc
.ospeedr
.modify(|_, w| w.ospeedr9().bits(0b11) );
}
// 1. Compile and run the example, in 16Mhz
// The processor SYSCLK defaults to HCI 16Mhz
// (this is what you get after a `monitor reset halt`).
//
// confirm that your ITM dump traces the init, idle and led on/off
// make sure your TPIU is set to a system clock at 16Mhz
// Confirm that your ITM dump traces the init, idle and led on/off.
// Make sure your TPIU is set to a system clock at 16Mhz
//
// you may use either ITM tracing using ITM dump or internally in
// vscode using the new "cortex debug" plugin
// What is the frequency of blinking?
//
// what is the frequency of blinking
// ** your answer here **
//
// commit your answers (bare6_1)
//
// 2. now connect an oscilloscope to PC9, which is set to
// output the MCO2
// 2. Now connect an oscilloscope to PC9, which is set to
// output the MCO2.
//
// What is the frequency of MCO2 read by the oscilloscope?
//
// what is the frequency of MCO2 read by the oscilloscope
// ** your answer here **
//
// compute the value of SYSCLK based on the oscilloscope reading
// Compute the value of SYSCLK based on the oscilloscope reading
//
// ** your answer here **
//
// what is the peak to peak reading of the signal
// What is the peak to peak reading of the signal?
//
// ** your answer here **
//
// make a folder called "pictures" in your git project
// make a screen dump or photo of the oscilloscope output
// save the the picture as "bare_6_16mhz_high_speed"
// Make a folder called "pictures" in your git project.
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_16mhz_high_speed".
//
// commit your answaaasers (bare6_2)
//
// 3. now run the example in 64Mz
// you can do that by issuing a `monitor reset init`
// which reprograms SYSCLK to 4*HCI
// (make sure you have the latest openocd v 0.10)
// 3. Now run the example in 64Mz
// You can do that by issuing a `monitor reset init`
// which reprograms SYSCLK to 4*HCI.
//
//
// confirm that your ITM dump traces the init, idle and led on/off
// Confirm that your ITM dump traces the init, idle and led on/off
// (make sure your TPIU is set to a system clock at 64Mhz)
//
// what is the frequency of blinking
// Uncommnet: `let cycles = 4 * 8_000_000;
//`
// What is the frequency of blinking?
//
// ** your answer here **
//
// commit your answers (bare6_3)
//
// 4. repeat the experiment 2
// what is the frequency of MCO2 read by the oscilloscope
// 4. Repeat experiment 2
//
// What is the frequency of MCO2 read by the oscilloscope?
//
// ** your answer here **
//
// compute the value of SYSCLK based on the oscilloscope reading
// Compute the value of SYSCLK based on the oscilloscope reading.
//
// ** your answer here **
// what is the peak to peak reading of the signal
//
// What is the peak to peak reading of the signal?
//
// ** your answer here **
//
// make a screen dump or photo of the oscilloscope output
// save the the picture as "bare_6_64mhz_high_speed"
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_64mhz_high_speed".
//
// commit your answers (bare6_4)
//
// 5. now we will put the MCU in 84MHz using the function
// 5. Now we will put the MCU in 84MHz using the function
// clock::set_84_mhz(rcc, flash);
//
// this function is part of the `f4` support crate (by Johonnes Sjölund)
// This function is part of the `f4` support crate (by Johonnes Sjölund)
// besides `rcc` (for clocking) it takes `flash` as a parameter to set
// up correct latency (wait states) for the flash memory (where our
// program typically resides). This is required since the flash cannot
// operate at the full 84MHz, so the MCU has to wait for the memory.
//
// repeat the experiment 2.
// what is the frequency of MCO2 read by the oscilloscope
// Repeat the experiment 2.
//
// What is the frequency of MCO2 read by the oscilloscope.
//
// ** your answer here **
//
// compute the value of SYSCLK based on the oscilloscope reading
// Compute the value of SYSCLK based on the oscilloscope reading.
//
// ** your answer here **
// what is the peak to peak reading of the signal
//
// What is the peak to peak reading of the signal.
//
// ** your answer here **
//
// make a screen dump or photo of the oscilloscope output
// save the the picture as "bare_6_84mhz_high_speed"
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_84mhz_high_speed"
//
// commit your answers (bare6_5)
//
// 6. now reprogram the PC9 to be "Low Speed", and re-run at 84Mz
// 6. Now reprogram the PC9 to be "Low Speed", and re-run at 84Mz.
//
// did the frequency change in comparison to assignment 5.
// ** your answer here **
// Did the frequency change in comparison to assignment 5?
//
// what is the peak to peak reading of the signal
// ** your answer here **
//
// why does it differ?
// What is the peak to peak reading of the signal (and why did it change)?
//
// ** your answer here **
//
// make a screen dump or photo of the oscilloscope output
// save the the picture as "bare_6_84mhz_low_speed"
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_84mhz_low_speed".
//
// commit your answers (bare6_6)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment