@@ -176,6 +176,6 @@ In this part of the course, we have covered.
- Energy Consumption is roughly proportional to the supply voltage (static leakage/dissipation), and exponential to the frequency (dynamic/switching activity dissipation). In the case of embedded systems, low-power modes allow parts of the system to be powered down while retaining sufficient functionality to wake on external (and/or internal) events. In sleep mode, both static and dynamic power dissipation is minimized typically to the order of uAmp (in comparison to mAmp in run mode).
Rust RTFM adopts an event driven approach allowing the system to automatically sleep in case no further tasks are eligible for scheduling. Moreover, leveraging on the zero-cost abstractions in Rust and the guarantees provided by the analysis framework, we do not need to sacrifice correctness/robustness and reliability in order to obtain highly efficient executables.
Rust RTIC adopts an event driven approach allowing the system to automatically sleep in case no further tasks are eligible for scheduling. Moreover, leveraging on the zero-cost abstractions in Rust and the guarantees provided by the analysis framework, we do not need to sacrifice correctness/robustness and reliability in order to obtain highly efficient executables.
Robust and Energy Efficient Real-Time Systems for real, This is the Way!