Select Git revision
Forked from
Per Lindgren / klee_tutorial
Source project has a limited visibility.
main.rs 6.02 KiB
mod common;
use common::*;
fn main() {
let t1 = Task {
id: "T1".to_string(),
prio: 1,
deadline: 100,
inter_arrival: 100,
trace: Trace {
id: "T1".to_string(),
start: 0,
end: 10,
inner: vec![],
},
};
let t2 = Task {
id: "T2".to_string(),
prio: 2,
deadline: 200,
inter_arrival: 200,
trace: Trace {
id: "T2".to_string(),
start: 0,
end: 30,
inner: vec![
Trace {
id: "R1".to_string(),
start: 10,
end: 20,
inner: vec![Trace {
id: "R2".to_string(),
start: 12,
end: 16,
inner: vec![],
}],
},
Trace {
id: "R1".to_string(),
start: 22,
end: 28,
inner: vec![],
},
],
},
};
let t3 = Task {
id: "T3".to_string(),
prio: 3,
deadline: 50,
inter_arrival: 50,
trace: Trace {
id: "T3".to_string(),
start: 0,
end: 30,
inner: vec![Trace {
id: "R2".to_string(),
start: 10,
end: 20,
inner: vec![],
}],
},
};
// builds a vector of tasks t1, t2, t3
let tasks: Tasks = vec![t1, t2, t3];
println!("tasks {:?}", &tasks);
println!("tot_util {}", total_load_factor(&tasks));
let (ip, tr) = pre_analysis(&tasks);
println!("ip: {:?}", ip);
println!("tr: {:?}", tr);
for t in &tasks {
response_time(t, &tasks, &ip, &tr);
}
}
/*
* Calculates the total load factor(Ltot).
* Ltot
*
* Note: We can compute the total CPU request (or load factor), as Ltot = sum(L(T)), T being the set of tasks.
*/
fn total_load_factor(tasks: &Tasks) -> f32 {
let mut ltot: f32 = 0.0;
for t in tasks {
ltot += cpu_load(t);
}
return ltot;
}
/*
* Calculates the cpu load of a task(L(t) where t is a task).
* L(t)
*
* Note: Each task t has a WCET C(t) and given (assumed) inter-arrival time A(t). The CPU request (or load) inferred by a task is L(t) = C(t)/A(t). Ask yourself, what is the consequence of C(t) > A(t)?
* Answer: If C(t) > A(t) then the cpu load of task t is more then the available cpu power in the
* worst case. And the task t will not be able to finish in time in the worst case.
*/
fn cpu_load(task: &Task) -> f32 {
return (wcet(&task.trace) as f32) / (task.inter_arrival as f32)
}
/*
* Worst case execution time(WCET) of a task t(C(t)).
* C(t)
*/
fn wcet(trace: &Trace) -> u32 {
return trace.end.wrapping_sub(trace.start);
}
/*
* Calculates the response time of task(R(t)).
* R(t)
*
* Note: * R(t) = B(t) + C(t) + I(t), where
* - B(t) is the blocking time for task t, and
* - I(t) is the interference (preemptions) to task t
*/
fn response_time(task: &Task, tasks: &Tasks, ip: &IdPrio, tr: &TaskResources) -> u32 {
let r: u32 = block_time(task, tasks, ip, tr) + wcet(&task.trace) + interference_time(task, tasks);
println!("response_time {:?}", r);
return r;
}
/*
* Calculates the blocking time for task t(B(t)).
* B(t)
*
* Note: B(t) = max(C(l_r)), where P(l) < P(t), π(l_r) >= P(t)
*/
fn block_time(task: &Task, tasks: &Tasks, ip: &IdPrio, tr: &TaskResources) -> u32 {
/*
* Helper function for finding the trace of a resource using only the id an a trace.
*/
fn find_res_tr<'a>(res_id: &String, trace: &'a Trace) -> Option<&'a Trace> {
if trace.id == *res_id {
return Some(trace);
} else {
for tr in &trace.inner {
match find_res_tr(res_id, tr) {
Some(val) => return Some(val),
None => (),
}
}
}
return None;
}
// Find all lower priority tasks
let mut lower_prio: Vec<&Task> = vec!();
for t in tasks {
if t.prio < task.prio {
lower_prio.push(t);
}
}
//println!("prio {:?}", task.prio);
//println!("lower_prio {:?}", lower_prio);
// Find all resources that will block the task(resources with a higher of equal priority) from
// the resources that the lower priority tasks use.
let mut block_res: Vec<&Trace> = vec!();
for lpt in lower_prio {
match tr.get(&lpt.id) {
Some(resources) =>{
for r in resources {
if *ip.get(r).unwrap() >= task.prio {
block_res.push(find_res_tr(r, &lpt.trace).unwrap());
}
}
},
None => (),
};
}
//println!("block_res {:?}", block_res);
// Calculate the max wcet of the list of blocking resource traces.
let mut block_time: u32 = 0;
for tr in block_res {
let wcet = wcet(tr);
if wcet > block_time {
block_time = wcet;
}
}
println!("block time {:?}", block_time);
return block_time;
}
/*
* Calculates the interference (preemptions) to task t(I(t)).
* I(t)
*
* Note: I(t) = sum(C(h) * ceiling(Bp(t)/A(h))), forall tasks h, P(h) > P(t), where
* Bp(t) is the busy-period
*/
fn interference_time(task: &Task, tasks: &Tasks) -> u32 {
let mut interference: u32 = 0;
for t in tasks {
if t.prio > task.prio {
interference += wcet(&t.trace) * (((busy_period(t) as f32) / (t.inter_arrival as f32)).ceil() as u32);
}
}
println!("interference_time {:?}", interference);
return interference;
}
/*
* Caclulates the busy period of task t(Bp(t)).
* Bp(t)
*
* Note: We can over approximate the busy period Bp(i) = D(i) (assuming the worst allowed busy-period).
* D(i) is the deadline of task i.
*/
fn busy_period(task: &Task) -> u32 {
return task.deadline;
}