Select Git revision
test000003.ktest
Forked from
Per Lindgren / klee_tutorial
Source project has a limited visibility.
-
Blinningjr authoredBlinningjr authored
rtic_bare7.rs 8.55 KiB
//! rtic_bare7.rs
//!
//! HAL OutputPin abstractions
//!
//! What it covers:
//! - using embedded hal, and the OutputPin abstraction
#![no_main]
#![no_std]
use panic_rtt_target as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use rtt_target::{rprintln, rtt_init_print};
use stm32f4xx_hal::stm32;
use stm32f4xx_hal::{
gpio::{gpioa::PA5, Output, PushPull},
prelude::*,
};
;
use embedded_hal::digital::v2::{OutputPin, ToggleableOutputPin};
const OFFSET: u32 = 8_000_000;
#[rtic::app(device = stm32f4xx_hal::stm32, monotonic = rtic::cyccnt::CYCCNT, peripherals = true)]
const APP: () = {
struct Resources {
// late resources
GPIOA: stm32::GPIOA,
// led: PA5<Output<PushPull>>,
}
#[init(schedule = [toggle])]
fn init(cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let mut core = cx.core;
let device = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
core.DCB.enable_trace();
core.DWT.enable_cycle_counter();
// semantically, the monotonic timer is frozen at time "zero" during `init`
// NOTE do *not* call `Instant::now` in this context; it will return a nonsense value
let now = cx.start; // the start time of the system
// Schedule `toggle` to run 8e6 cycles (clock cycles) in the future
cx.schedule.toggle(now + OFFSET.cycles()).unwrap();
// power on GPIOA, RM0368 6.3.11
device.RCC.ahb1enr.modify(|_, w| w.gpioaen().set_bit());
// configure PA5 as output, RM0368 8.4.1
device.GPIOA.moder.modify(|_, w| w.moder5().bits(1));
// pass on late resources
init::LateResources {
GPIOA: device.GPIOA,
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
#[task(resources = [GPIOA], schedule = [toggle])]
fn toggle(cx: toggle::Context) {
static mut TOGGLE: bool = false;
rprintln!("toggle @ {:?}", Instant::now());
if *TOGGLE {
cx.resources.GPIOA.bsrr.write(|w| w.bs5().set_bit());
} else {
cx.resources.GPIOA.bsrr.write(|w| w.br5().set_bit());
}
*TOGGLE = !*TOGGLE;
cx.schedule.toggle(cx.scheduled + OFFSET.cycles()).unwrap();
}
extern "C" {
fn EXTI0();
}
};
fn _toggle_generic<E>(led: &mut dyn OutputPin<Error = E>, toggle: &mut bool) {
if *toggle {
led.set_high().ok();
} else {
led.set_low().ok();
}
*toggle = !*toggle;
}
fn _toggleable_generic<E>(led: &mut dyn ToggleableOutputPin<Error = E>) {
led.toggle().ok();
}
// 1. In this example you will use RTT.
//
// > cargo run --example rtic_bare7
//
// Look in the generated documentation for `set_high`/`set_low`.
// (You created documentation for your dependencies in previous exercise
// so you can just search (press `S`) for `OutputPin`).
// You will find that these methods are implemented for `Output` pins.
//
// Now change your code to use these functions instead of the low-level GPIO API.
//
// HINTS:
// - A GPIOx peripheral can be `split` into individual PINs Px0..Px15).
// - A Pxy, can be turned into an `Output` by `into_push_pull_output`.
// - You may optionally set other pin properties as well (such as `speed`).
// - An `Output` pin provides `set_low`/`set_high`
// - Instead of passing `GPIO` resource to the `toggle` task pass the
// `led: PA5<Output<PushPull>>` resource instead.
//
// Comment your code to explain the steps taken.
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_1)
//
// 2. Further generalizations:
//
// Now look at the documentation for `embedded_hal::digital::v2::OutputPin`.
//
// You see that the OutputPin trait defines `set_low`/`set_high` functions.
// Your task is to alter the code to use the `set_low`/`set_high` API.
//
// The function `_toggle_generic` is generic to any object that
// implements the `OutputPin<Error = E>` trait.
//
// Digging deeper we find the type parameter `E`, which in this case
// is left generic (unbound).
//
// It will be instantiated with a concrete type argument when called.
//
// Our `PA5<Output<PushPull>>` implements `OutputPin` trait, thus
// we can pass the `led` resource to `_toggle_generic`.
//
// The error type is given by the stm32f4xx-hal implementation:
// where `core::convert::Infallible` is used to indicate
// there are no errors to be expected (hence infallible).
//
// Additionally, `_toggle_generic` takes a mutable reference
// `toggle: &mut bool`, so you need to pass your `TOGGLE` variable.
//
// As you see, `TOGGLE` holds the "state", switching between
// `true` and `false` (to make your led blink).
//
// Change your code into using the `_toggle_generic` function.
// (You may rename it to `toggle_generic` if wished.)
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_2)
//
// 3. What about the state?
//
// In your code `TOGGLE` holds the "state". However, the underlying
// hardware ALSO holds the state (if the corresponding bit is set/cleared).
//
// What if we can leverage that, and guess what we can!!!!
//
// Look at the documentation for `embedded_hal::digital::v2::ToggleableOutputPin`,
// and the implementation of:
//
// fn _toggleable_generic(led: &mut dyn ToggleableOutputPin<Error = Infallible>) {
// led.toggle().ok();
// }
//
// The latter does not take any state variable, instead it directly `toggle()`
// the `ToggleableOutputPin`.
//
// Now alter your code to leverage on the `_toggleable_generic` function.
// (You should be able to remove the `TOGGLE` state variable altogether.)
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_3)
//
// 4. Discussion:
//
// In this exercise you have gone from a very hardware specific implementation,
// to leveraging abstractions (batteries included).
//
// Your final code amounts to "configuration" rather than "coding".
//
// This reduces the risk of errors (as you let the libraries do the heavy lifting).
//
// This also improves code-re use. E.g., if you were to do something less
// trivial then merely toggling you can do that in a generic manner,
// breaking out functionality into "components" re-usable in other applications.
//
// Of course the example is trivial, you don't gain much here, but the principle
// is the same behind drivers for USART communication, USB, PMW3389 etc.
//
// 5. More details:
//
// Looking closer at the implementation:
// `led: &mut dyn OutputPin<Error = E>`
//
// You may ask what kind of mumbo jumbo is at play here.
//
// This is the way to express that we expect a mutable reference to a trait object
// that implements the `OutputPin`. Since we will change the underlying object
// (in this case an GPIOA pin 5) the reference needs to be mutable.
//
// Trait objects are further explained in the Rust book.
// The `dyn` keyword indicates dynamic dispatch (through a VTABLE).
// https://doc.rust-lang.org/std/keyword.dyn.html
//
// Notice: the Rust compiler (rustc + LLVM) is really smart. In many cases
// it can analyse the call chain, and conclude the exact trait object type at hand.
// In such cases the dynamic dispatch is turned into a static dispatch
// and the VTABLE is gone, and we have a zero-cost abstraction.
//
// If the trait object is stored for e.g., in an array along with other
// trait objects (of different concrete type), there is usually no telling
// the concrete type of each element, and we will have dynamic dispatch.
// Arguably, this is also a zero-cost abstraction, as there is no (obvious)
// way to implement it more efficiently. Remember, zero-cost is not without cost
// just that it is as good as it possibly gets (you can't make it better by hand).
//
// You can also force the compiler to deduce the type at compile time, by using
// `impl` instead of `dyn`, if you are sure you don't want the compiler to
// "fallback" to dynamic dispatch.
//
// You might find Rust to have long compile times. Yes you are right,
// and this type of deep analysis done in release mode is part of the story.
// On the other hand, the aggressive optimization allows us to code
// in a generic high level fashion and still have excellent performing binaries.