Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
E
e7020e_2021
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Edward Källstedt
e7020e_2021
Commits
39ba946b
Commit
39ba946b
authored
4 years ago
by
Per Lindgren
Browse files
Options
Downloads
Patches
Plain Diff
exercises rtic_bare6/7 wip
parent
dfd79ce0
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/rtic_bare6.rs
+237
-0
237 additions, 0 deletions
examples/rtic_bare6.rs
examples/rtic_bare7.rs
+129
-0
129 additions, 0 deletions
examples/rtic_bare7.rs
with
366 additions
and
0 deletions
examples/rtic_bare6.rs
0 → 100644
+
237
−
0
View file @
39ba946b
//! rtic_bare6.rs
//!
//! Clocking
//!
//! What it covers:
//! - using svd2rust generated API
//! - using the stm32f4xx-hal to set clocks
//! - routing the clock to a PIN for monitoring by an oscilloscope
#![no_main]
#![no_std]
use
panic_rtt_target
as
_
;
use
rtic
::
cyccnt
::{
Instant
,
U32Ext
as
_
};
use
rtt_target
::{
rprintln
,
rtt_init_print
};
use
stm32f4xx_hal
::{
prelude
::
*
,
stm32
::{
self
,
GPIOC
,
RCC
},
};
const
OFFSET
:
u32
=
8_000_000
;
#[rtic::app(device
=
stm32f4xx_hal::stm32,
monotonic
=
rtic::cyccnt::CYCCNT,
peripherals
=
true
)]
const
APP
:
()
=
{
struct
Resources
{
// late resources
GPIOA
:
stm32
::
GPIOA
,
}
#[init(schedule
=
[
toggle]
)]
fn
init
(
cx
:
init
::
Context
)
->
init
::
LateResources
{
rtt_init_print!
();
rprintln!
(
"init"
);
let
mut
core
=
cx
.core
;
let
device
=
cx
.device
;
// Initialize (enable) the monotonic timer (CYCCNT)
core
.DCB
.enable_trace
();
core
.DWT
.enable_cycle_counter
();
// semantically, the monotonic timer is frozen at time "zero" during `init`
// NOTE do *not* call `Instant::now` in this context; it will return a nonsense value
let
now
=
cx
.start
;
// the start time of the system
// Schedule `toggle` to run 8e6 cycles (clock cycles) in the future
cx
.schedule
.toggle
(
now
+
OFFSET
.cycles
())
.unwrap
();
// setup LED
// power on GPIOA, RM0368 6.3.11
device
.RCC.ahb1enr
.modify
(|
_
,
w
|
w
.gpioaen
()
.set_bit
());
// configure PA5 as output, RM0368 8.4.1
device
.GPIOA.moder
.modify
(|
_
,
w
|
w
.moder5
()
.bits
(
1
));
clock_out
(
&
device
.RCC
,
&
device
.GPIOC
);
let
rcc
=
device
.RCC
.constrain
();
let
_clocks
=
rcc
.cfgr
.freeze
();
// Set up the system clock. 48 MHz?
// let _clocks = rcc
// .cfgr
// .sysclk(48.mhz())
// .pclk1(24.mhz())
// .freeze();
// pass on late resources
init
::
LateResources
{
GPIOA
:
device
.GPIOA
,
}
}
#[idle]
fn
idle
(
_cx
:
idle
::
Context
)
->
!
{
rprintln!
(
"idle"
);
loop
{
continue
;
}
}
#[task(resources
=
[
GPIOA]
,
schedule
=
[
toggle
])]
fn
toggle
(
cx
:
toggle
::
Context
)
{
static
mut
TOGGLE
:
bool
=
false
;
rprintln!
(
"toggle @ {:?}"
,
Instant
::
now
());
if
*
TOGGLE
{
cx
.resources.GPIOA.bsrr
.write
(|
w
|
w
.bs5
()
.set_bit
());
}
else
{
cx
.resources.GPIOA.bsrr
.write
(|
w
|
w
.br5
()
.set_bit
());
}
*
TOGGLE
=
!*
TOGGLE
;
cx
.schedule
.toggle
(
cx
.scheduled
+
OFFSET
.cycles
())
.unwrap
();
}
extern
"C"
{
fn
EXTI0
();
}
};
// see the Reference Manual RM0368 (www.st.com/resource/en/reference_manual/dm00096844.pdf)
// rcc, chapter 6
// gpio, chapter 8
fn
clock_out
(
rcc
:
&
RCC
,
gpioc
:
&
GPIOC
)
{
// output MCO2 to pin PC9
// mco2 : SYSCLK = 0b00
// mcopre : divide by 4 = 0b110
rcc
.cfgr
.modify
(|
_
,
w
|
unsafe
{
w
.mco2
()
.bits
(
0b00
)
.mco2pre
()
.bits
(
0b110
)
});
// power on GPIOC, RM0368 6.3.11
rcc
.ahb1enr
.modify
(|
_
,
w
|
w
.gpiocen
()
.set_bit
());
// MCO_2 alternate function AF0, STM32F401xD STM32F401xE data sheet
// table 9
// AF0, gpioc reset value = AF0
// configure PC9 as alternate function 0b10, RM0368 6.2.10
gpioc
.moder
.modify
(|
_
,
w
|
w
.moder9
()
.bits
(
0b10
));
// otyper reset state push/pull, in reset state (don't need to change)
// ospeedr 0b11 = very high speed
gpioc
.ospeedr
.modify
(|
_
,
w
|
w
.ospeedr9
()
.bits
(
0b11
));
}
// 1. In this example you will use RTT.
//
// > cargo run --example rtic_bare6
//
// Confirm that your RTT traces the init, idle and led on/off.
//
// What is the (default) MCU (SYSCLK) frequency?
//
// ** your answer here **
//
// What is the (default) DWT CYCCNT frequency?
//
// ** your answer here **
//
// What is the frequency of blinking?
//
// ** your answer here **
//
// commit your answers (bare6_1)
//
// 2. Now connect an oscilloscope to PC9, which is set to
// output the MCO2.
//
// Compute the value of SYSCLK based on the oscilloscope reading
//
// ** your answer here **
//
// What is the peak to peak (voltage) reading of the signal?
//
// ** your answer here **
//
// Make a folder called "pictures" in your git project.
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_16mhz_high_speed".
//
// Commit your answers (bare6_2)
//
// 3. Now run the example in 48Mz, by commenting out line 56, and un-commenting
// lines 58-63.
//`
// What is the frequency of blinking?
//
// ** your answer here **
//
// Commit your answers (bare6_3)
//
// Now change the constant `OFFSET` so you get the same blinking frequency as in 1.
// Test and validate that you got the desired behavior.
//
// Commit your answers (bare6_3)
//
// 4. Repeat experiment 2
//
// What is the frequency of MCO2 read by the oscilloscope?
//
// ** your answer here **
//
// Compute the value of SYSCLK based on the oscilloscope reading.
//
// ** your answer here **
//
// What is the peak to peak reading of the signal?
//
// ** your answer here **
//
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_64mhz_high_speed".
//
// Commit your answers (bare6_4)
//
// 5. In the `clock_out` function, the setup of registers is done through
// setting bit-pattens manually, e.g.
// rcc.cfgr
// .modify(|_, w| unsafe { w.mco2().bits(0b00).mco2pre().bits(0b110) });
//
// However based on the vendor SVD file the svd2rust API provides
// a better abstraction, based on pattern enums and functions.
//
// To view the API you can generate documentation for your crate:
//
// > cargo doc --open
//
// By searching for `mco2` you find the enumerations and functions.
// So here
// `w.mco2().bits{0b00}` is equivalent to
// `w.mco2().sysclk()` and improves readability.
//
// Replace all bit-patterns used by the function name equivalents.
//
// Test that the application still runs as before.
//
// Commit your code (bare6_5)
//
// 6. Discussion
//
// In this exercise, you have learned to use the stm32f4xx-hal
// to set the clock speed of your MCU.
//
// You have also learned how you can monitor/validate MCU clock(s) on pin(s)
// connected to an oscilloscope.
//
// You have also learned how you can improve readability of your code
// by leveraging the abstractions provided by the PAC.
//
// As mentioned before the PACs are machine generated by `svd2rust`
// from vendor provided System View Desciptions (SVDs).
//
// The PACs provide low level peripheral access abstractions, while
// the HALs provide higher level abstractions and functionality.
This diff is collapsed.
Click to expand it.
examples/rtic_bare7.rs
0 → 100644
+
129
−
0
View file @
39ba946b
//! rtic_bare7.rs
//!
//! Clocking
//!
//! What it covers:
//! - using embedded hal, and the OutputPin abstraction
use
panic_rtt_target
as
_
;
use
rtic
::
cyccnt
::{
Instant
,
U32Ext
as
_
};
use
rtt_target
::{
rprintln
,
rtt_init_print
};
use
stm32f4xx_hal
::
stm32
;
const
OFFSET
:
u32
=
8_000_000
;
#[rtic::app(device
=
stm32f4xx_hal::stm32,
monotonic
=
rtic::cyccnt::CYCCNT,
peripherals
=
true
)]
const
APP
:
()
=
{
struct
Resources
{
// late resources
GPIOA
:
stm32
::
GPIOA
,
}
#[init(schedule
=
[
toggle]
)]
fn
init
(
cx
:
init
::
Context
)
->
init
::
LateResources
{
rtt_init_print!
();
rprintln!
(
"init"
);
let
mut
core
=
cx
.core
;
let
device
=
cx
.device
;
// Initialize (enable) the monotonic timer (CYCCNT)
core
.DCB
.enable_trace
();
core
.DWT
.enable_cycle_counter
();
// semantically, the monotonic timer is frozen at time "zero" during `init`
// NOTE do *not* call `Instant::now` in this context; it will return a nonsense value
let
now
=
cx
.start
;
// the start time of the system
// Schedule `toggle` to run 8e6 cycles (clock cycles) in the future
cx
.schedule
.toggle
(
now
+
OFFSET
.cycles
())
.unwrap
();
// power on GPIOA, RM0368 6.3.11
device
.RCC.ahb1enr
.modify
(|
_
,
w
|
w
.gpioaen
()
.set_bit
());
// configure PA5 as output, RM0368 8.4.1
device
.GPIOA.moder
.modify
(|
_
,
w
|
w
.moder5
()
.bits
(
1
));
// pass on late resources
init
::
LateResources
{
GPIOA
:
device
.GPIOA
,
}
}
#[idle]
fn
idle
(
_cx
:
idle
::
Context
)
->
!
{
rprintln!
(
"idle"
);
loop
{
continue
;
}
}
#[task(resources
=
[
GPIOA]
,
schedule
=
[
toggle
])]
fn
toggle
(
cx
:
toggle
::
Context
)
{
static
mut
TOGGLE
:
bool
=
false
;
rprintln!
(
"toggle @ {:?}"
,
Instant
::
now
());
if
*
TOGGLE
{
cx
.resources.GPIOA.bsrr
.write
(|
w
|
w
.bs5
()
.set_bit
());
}
else
{
cx
.resources.GPIOA.bsrr
.write
(|
w
|
w
.br5
()
.set_bit
());
}
*
TOGGLE
=
!*
TOGGLE
;
cx
.schedule
.toggle
(
cx
.scheduled
+
OFFSET
.cycles
())
.unwrap
();
}
extern
"C"
{
fn
EXTI0
();
}
};
// 1. In this example you will use RTT.
//
// > cargo run --example rtic_bare7
//
// Now look at the documentation for `embedded_hal::digital::v2::OutputPin`.
// (You created documentation for your dependencies in previous exercise
// so you can just search (press `S`) for `OutputPin`).
//
// You see that the OutputPin trait defines `set_low`/`set_high` functions.
// Your task is to alter the code to use the `set_low`/`set_high` API.
//
// HINTS:
// - A GPIOx peripheral can be `split` into individual PINs Px0..Px15).
// - A Pxy, can be turned into an `Output` by `into_push_pull_output`.
// - You may optionally set other pin properties as well (such as `speed`).
// - An `Output` pin provides `set_low`/`set_high`
// (and implements the `OutputPin` trait in embedded-hal).
//
// Comment your code to explain the steps taken.
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_1)
//
// 2. Optional
//
// Use the `toggle` function instead to further simply your code.
//
// Notice:
// The `ToggleableOutputPin` abstraction requires `embedded-hal`
// to compiled with the `unproven` feature.
//
// The `embedded-hal` traits is mostly used to write drivers
// that is hardware agnostic (and thus cross platform).
//
// However:
// In our case we can use `toggle` directly as implemented by the `stm32f4xx-hal`.
//
// Confirm that your implementation correctly toggles the LED.
//
// Which one do you prefer and why (what problem does it solve)?
//
// ** your answer here **
//
// Commit your answer (bare7_2)
//
// 3. Discussion
//
// In this exercise you have learned more on navigating the generated documentation
// and to use abstractions to simplify and generalize your code.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment