Skip to content
Snippets Groups Projects
Commit adc5431c authored by Per Lindgren's avatar Per Lindgren
Browse files

Initial commit

parents
No related branches found
No related tags found
No related merge requests found
[target.thumbv7m-none-eabi]
# uncomment this to make `cargo run` execute programs on QEMU
# runner = "qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel"
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
# uncomment ONE of these three option to make `cargo run` start a GDB session
# which option to pick depends on your system
# runner = "arm-none-eabi-gdb -q -x openocd.gdb"
# runner = "gdb-multiarch -q -x openocd.gdb"
# runner = "gdb -q -x openocd.gdb"
runner = "probe-run --chip STM32F411RETx"
rustflags = [
# This is needed if your flash or ram addresses are not aligned to 0x10000 in memory.x
# See https://github.com/rust-embedded/cortex-m-quickstart/pull/95
"-C", "link-arg=--nmagic",
# LLD (shipped with the Rust toolchain) is used as the default linker
"-C", "link-arg=-Tlink.x",
# if you run into problems with LLD switch to the GNU linker by commenting out
# this line
# "-C", "linker=arm-none-eabi-ld",
# if you need to link to pre-compiled C libraries provided by a C toolchain
# use GCC as the linker by commenting out both lines above and then
# uncommenting the three lines below
# "-C", "linker=arm-none-eabi-gcc",
# "-C", "link-arg=-Wl,-Tlink.x",
# "-C", "link-arg=-nostartfiles",
]
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
# target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
# target = "thumbv8m.base-none-eabi" # Cortex-M23
# target = "thumbv8m.main-none-eabi" # Cortex-M33 (no FPU)
# target = "thumbv8m.main-none-eabihf" # Cortex-M33 (with FPU)
**/*.rs.bk
.#*
.gdb_history
Cargo.lock
target/
# editor files
.vscode/*
!.vscode/*.md
!.vscode/*.svd
!.vscode/launch.json
!.vscode/tasks.json
!.vscode/extensions.json
\ No newline at end of file
# VS Code Configuration
Example configurations for debugging programs in-editor with VS Code.
This directory contains configurations for two platforms:
- `LM3S6965EVB` on QEMU
- `STM32F303x` via OpenOCD
## Required Extensions
If you have the `code` command in your path, you can run the following commands to install the necessary extensions.
```sh
code --install-extension rust-lang.rust
code --install-extension marus25.cortex-debug
```
Otherwise, you can use the Extensions view to search for and install them, or go directly to their marketplace pages and click the "Install" button.
- [Rust Language Server (RLS)](https://marketplace.visualstudio.com/items?itemName=rust-lang.rust)
- [Cortex-Debug](https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug)
## Use
The quickstart comes with two debug configurations.
Both are configured to build the project, using the default settings from `.cargo/config`, prior to starting a debug session.
1. QEMU: Starts a debug session using an emulation of the `LM3S6965EVB` mcu.
- This works on a fresh `cargo generate` without modification of any of the settings described above.
- Semihosting output will be written to the Output view `Adapter Output`.
- `ITM` logging does not work with QEMU emulation.
2. OpenOCD: Starts a debug session for a `STM32F3DISCOVERY` board (or any `STM32F303x` running at 8MHz).
- Follow the instructions above for configuring the build with `.cargo/config` and the `memory.x` linker script.
- `ITM` output will be written to the Output view `SWO: ITM [port: 0, type: console]` output.
### Git
Files in the `.vscode/` directory are `.gitignore`d by default because many files that may end up in the `.vscode/` directory should not be committed and shared.
If you would like to save this debug configuration to your repository and share it with your team, you'll need to explicitly `git add` the files to your repository.
```sh
git add -f .vscode/launch.json
git add -f .vscode/tasks.json
git add -f .vscode/*.svd
```
## Customizing for other targets
For full documentation, see the [Cortex-Debug][cortex-debug] repository.
### Device
Some configurations use this to automatically find the SVD file.
Replace this with the part number for your device.
```json
"device": "STM32F303VCT6",
```
### OpenOCD Config Files
The `configFiles` property specifies a list of files to pass to OpenOCD.
```json
"configFiles": [
"interface/stlink-v2-1.cfg",
"target/stm32f3x.cfg"
],
```
See the [OpenOCD config docs][openocd-config] for more information and the [OpenOCD repository for available configuration files][openocd-repo].
### SVD
The SVD file is a standard way of describing all registers and peripherals of an ARM Cortex-M mCU.
Cortex-Debug needs this file to display the current register values for the peripherals on the device.
You can probably find the SVD for your device on the vendor's website.
For example, the STM32F3DISCOVERY board uses an mcu from the `STM32F303x` line of processors.
All the SVD files for the STM32F3 series are available on [ST's Website][stm32f3].
Download the [stm32f3 SVD pack][stm32f3-svd], and copy the `STM32F303.svd` file into `.vscode/`.
This line of the config tells the Cortex-Debug plug in where to find the file.
```json
"svdFile": "${workspaceRoot}/.vscode/STM32F303.svd",
```
For other processors, simply copy the correct `*.svd` file into the project and update the config accordingly.
### CPU Frequency
If your device is running at a frequency other than 8MHz, you'll need to modify this line of `launch.json` for the `ITM` output to work correctly.
```json
"cpuFrequency": 8000000,
```
### Other GDB Servers
For information on setting up GDB servers other than OpenOCD, see the [Cortex-Debug repository][cortex-debug].
[cortex-debug]: https://github.com/Marus/cortex-debug
[stm32f3]: https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32f3-series.html#resource
[stm32f3-svd]: https://www.st.com/resource/en/svd/stm32f3_svd.zip
[openocd-config]: http://openocd.org/doc/html/Config-File-Guidelines.html
[openocd-repo]: https://sourceforge.net/p/openocd/code/ci/master/tree/tcl/
This diff is collapsed.
This diff is collapsed.
{
// See https://go.microsoft.com/fwlink/?LinkId=827846 to learn about workspace recommendations.
// Extension identifier format: ${publisher}.${name}. Example: vscode.csharp
// List of extensions which should be recommended for users of this workspace.
"recommendations": [
"matklad.rust-analyzer",
"marus25.cortex-debug",
],
// List of extensions recommended by VS Code that should not be recommended for users of this workspace.
"unwantedRecommendations": []
}
\ No newline at end of file
{
/*
* Requires the Rust Language Server (RLS) and Cortex-Debug extensions
* https://marketplace.visualstudio.com/items?itemName=rust-lang.rust
* https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug
*/
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"type": "cortex-debug",
"request": "launch",
"name": "Cortex Debug",
"servertype": "openocd",
"cwd": "${workspaceRoot}",
"preLaunchTask": "cargo build --example",
"runToMain": true,
"svdFile": "${workspaceRoot}/.vscode/STM32F401.svd",
"configFiles": [
"interface/stlink-v2-1.cfg",
"target/stm32f4x.cfg"
],
"preRestartCommands": [
"load",
],
"postLaunchCommands": [
"monitor arm semihosting enable"
],
"swoConfig": {
"enabled": true,
"cpuFrequency": 8000000,
"swoFrequency": 2000000,
"source": "probe",
"decoders": [
{
"type": "console",
"label": "ITM",
"port": 0
}
]
},
"executable": "./target/thumbv7em-none-eabi/debug/examples/${fileBasenameNoExtension}",
"cpu": "cortex-m4",
},
{
"type": "cortex-debug",
"request": "launch",
"name": "Cortex Release",
"servertype": "openocd",
"cwd": "${workspaceRoot}",
"preLaunchTask": "cargo build --example --release",
"runToMain": true,
"svdFile": "${workspaceRoot}/.vscode/STM32F401.svd",
"configFiles": [
"interface/stlink-v2-1.cfg",
"target/stm32f4x.cfg"
],
"preRestartCommands": [
"load",
],
"postLaunchCommands": [
"monitor arm semihosting enable"
],
"executable": "./target/thumbv7em-none-eabi/release/examples/${fileBasenameNoExtension}",
"cpu": "cortex-m4",
},
{
"type": "cortex-debug",
"request": "launch",
"name": "Cortex Nightly",
"servertype": "openocd",
"cwd": "${workspaceRoot}",
"preLaunchTask": "cargo build --example --release --nightly",
"runToMain": true,
"svdFile": "${workspaceRoot}/.vscode/STM32F401.svd",
"configFiles": [
"interface/stlink-v2-1.cfg",
"target/stm32f4x.cfg"
],
"preRestartCommands": [
"load",
],
"postLaunchCommands": [
"monitor arm semihosting enable"
],
"executable": "./target/thumbv7em-none-eabi/release/examples/${fileBasenameNoExtension}",
"cpu": "cortex-m4",
},
]
}
\ No newline at end of file
{
// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"type": "cargo",
"command": "build --example ${fileBasenameNoExtension}",
"problemMatcher": [
"$rustc"
],
"group": "build",
"label": "cargo build --example"
},
{
"type": "cargo",
"command": "build --example ${fileBasenameNoExtension} --release",
"problemMatcher": [
"$rustc"
],
"group": "build",
"label": "cargo build --example --release"
},
{
"type": "cargo",
"command": "build --example ${fileBasenameNoExtension} --release --features nightly",
"problemMatcher": [
"$rustc"
],
"group": "build",
"label": "cargo build --example --release --nightly"
}
]
}
\ No newline at end of file
[package]
authors = ["Per Lindgren <per.lindgren@ltu.se>"]
edition = "2018"
readme = "README.md"
name = "app"
version = "0.1.0"
[dependencies]
cortex-m = "0.6.4"
cortex-m-rt = "0.6.13"
cortex-m-semihosting = "0.3.7"
cortex-m-rtic = "0.5.5"
# Panic handlers, comment all but one to generate doc!
panic-halt = "0.2.0"
# Uncomment for the panic example.
panic-itm = "0.4.2"
# Uncomment for the rtt-timing example.
panic-rtt-target = { version = "0.1.1", features = ["cortex-m"] }
# Uncomment for the panic example.
panic-semihosting = "0.5.6"
# Tracing
rtt-target = { version = "0.3.0", features = ["cortex-m"] }
[dependencies.stm32f4]
version = "0.12.1"
features = ["stm32f411", "rt"]
# Uncomment for the allocator example.
# alloc-cortex-m = "0.4.0"
# Uncomment for the device example.
# Update `memory.x`, set target to `thumbv7em-none-eabihf` in `.cargo/config`,
# and then use `cargo build --examples device` to build it.
# [dependencies.stm32f3]
# features = ["stm32f303", "rt"]
# version = "0.7.1"
# this lets you use `cargo fix`!
[[bin]]
name = "app"
test = false
bench = false
[profile.dev]
incremental = false
codegen-units = 1
[profile.release]
codegen-units = 1 # better optimizations
debug = true # symbols are nice and they don't increase the size on Flash
lto = true # better optimizations
# [features]
# nightly = ["cortex-m/inline-asm"]
# # this lets you use `cargo fix`!
# [[bin]]
# name = "app"
# test = false
# bench = false
# [profile.release]
# codegen-units = 1 # better optimizations
# debug = true # symbols are nice and they don't increase the size on Flash
# lto = true # better optimizations
README.md 0 → 100644
# `cortex-m-quickstart`
> A template for building applications for ARM Cortex-M microcontrollers
This project is developed and maintained by the [Cortex-M team][team].
## Dependencies
To build embedded programs using this template you'll need:
- Rust 1.31, 1.30-beta, nightly-2018-09-13 or a newer toolchain. e.g. `rustup
default beta`
- The `cargo generate` subcommand. [Installation
instructions](https://github.com/ashleygwilliams/cargo-generate#installation).
- `rust-std` components (pre-compiled `core` crate) for the ARM Cortex-M
targets. Run:
``` console
$ rustup target add thumbv6m-none-eabi thumbv7m-none-eabi thumbv7em-none-eabi thumbv7em-none-eabihf
```
## Using this template
**NOTE**: This is the very short version that only covers building programs. For
the long version, which additionally covers flashing, running and debugging
programs, check [the embedded Rust book][book].
[book]: https://rust-embedded.github.io/book
0. Before we begin you need to identify some characteristics of the target
device as these will be used to configure the project:
- The ARM core. e.g. Cortex-M3.
- Does the ARM core include an FPU? Cortex-M4**F** and Cortex-M7**F** cores do.
- How much Flash memory and RAM does the target device has? e.g. 256 KiB of
Flash and 32 KiB of RAM.
- Where are Flash memory and RAM mapped in the address space? e.g. RAM is
commonly located at address `0x2000_0000`.
You can find this information in the data sheet or the reference manual of your
device.
In this example we'll be using the STM32F3DISCOVERY. This board contains an
STM32F303VCT6 microcontroller. This microcontroller has:
- A Cortex-M4F core that includes a single precision FPU
- 256 KiB of Flash located at address 0x0800_0000.
- 40 KiB of RAM located at address 0x2000_0000. (There's another RAM region but
for simplicity we'll ignore it).
1. Instantiate the template.
``` console
$ cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
Project Name: app
Creating project called `app`...
Done! New project created /tmp/app
$ cd app
```
2. Set a default compilation target. There are four options as mentioned at the
bottom of `.cargo/config`. For the STM32F303VCT6, which has a Cortex-M4F
core, we'll pick the `thumbv7em-none-eabihf` target.
``` console
$ tail -n6 .cargo/config
```
``` toml
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
```
3. Enter the memory region information into the `memory.x` file.
``` console
$ cat memory.x
/* Linker script for the STM32F303VCT6 */
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
FLASH : ORIGIN = 0x08000000, LENGTH = 256K
RAM : ORIGIN = 0x20000000, LENGTH = 40K
}
```
4. Build the template application or one of the examples.
``` console
$ cargo build
```
## VS Code
This template includes launch configurations for debugging CortexM programs with Visual Studio Code located in the `.vscode/` directory.
See [.vscode/README.md](./.vscode/README.md) for more information.
If you're not using VS Code, you can safely delete the directory from the generated project.
# License
This template is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
http://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
## Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.
## Code of Conduct
Contribution to this crate is organized under the terms of the [Rust Code of
Conduct][CoC], the maintainer of this crate, the [Cortex-M team][team], promises
to intervene to uphold that code of conduct.
[CoC]: https://www.rust-lang.org/policies/code-of-conduct
[team]: https://github.com/rust-embedded/wg#the-cortex-m-team
build.rs 0 → 100644
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
}
//! How to use the heap and a dynamic memory allocator
//!
//! This example depends on the alloc-cortex-m crate so you'll have to add it to your Cargo.toml:
//!
//! ``` text
//! # or edit the Cargo.toml file manually
//! $ cargo add alloc-cortex-m
//! ```
//!
//! ---
#![feature(alloc_error_handler)]
#![no_main]
#![no_std]
extern crate alloc;
use panic_halt as _;
use self::alloc::vec;
use core::alloc::Layout;
use alloc_cortex_m::CortexMHeap;
use cortex_m::asm;
use cortex_m_rt::entry;
use cortex_m_semihosting::{hprintln, debug};
// this is the allocator the application will use
#[global_allocator]
static ALLOCATOR: CortexMHeap = CortexMHeap::empty();
const HEAP_SIZE: usize = 1024; // in bytes
#[entry]
fn main() -> ! {
// Initialize the allocator BEFORE you use it
unsafe { ALLOCATOR.init(cortex_m_rt::heap_start() as usize, HEAP_SIZE) }
// Growable array allocated on the heap
let xs = vec![0, 1, 2];
hprintln!("{:?}", xs).unwrap();
// exit QEMU
// NOTE do not run this on hardware; it can corrupt OpenOCD state
debug::exit(debug::EXIT_SUCCESS);
loop {}
}
// define what happens in an Out Of Memory (OOM) condition
#[alloc_error_handler]
fn alloc_error(_layout: Layout) -> ! {
asm::bkpt();
loop {}
}
//! Debugging a crash (exception)
//!
//! Most crash conditions trigger a hard fault exception, whose handler is defined via
//! `exception!(HardFault, ..)`. The `HardFault` handler has access to the exception frame, a
//! snapshot of the CPU registers at the moment of the exception.
//!
//! This program crashes and the `HardFault` handler prints to the console the contents of the
//! `ExceptionFrame` and then triggers a breakpoint. From that breakpoint one can see the backtrace
//! that led to the exception.
//!
//! ``` text
//! (gdb) continue
//! Program received signal SIGTRAP, Trace/breakpoint trap.
//! __bkpt () at asm/bkpt.s:3
//! 3 bkpt
//!
//! (gdb) backtrace
//! #0 __bkpt () at asm/bkpt.s:3
//! #1 0x080030b4 in cortex_m::asm::bkpt () at $$/cortex-m-0.5.0/src/asm.rs:19
//! #2 rust_begin_unwind (args=..., file=..., line=99, col=5) at $$/panic-semihosting-0.2.0/src/lib.rs:87
//! #3 0x08001d06 in core::panicking::panic_fmt () at libcore/panicking.rs:71
//! #4 0x080004a6 in crash::hard_fault (ef=0x20004fa0) at examples/crash.rs:99
//! #5 0x08000548 in UserHardFault (ef=0x20004fa0) at <exception macros>:10
//! #6 0x0800093a in HardFault () at asm.s:5
//! Backtrace stopped: previous frame identical to this frame (corrupt stack?)
//! ```
//!
//! In the console output one will find the state of the Program Counter (PC) register at the time
//! of the exception.
//!
//! ``` text
//! panicked at 'HardFault at ExceptionFrame {
//! r0: 0x2fffffff,
//! r1: 0x2fffffff,
//! r2: 0x080051d4,
//! r3: 0x080051d4,
//! r12: 0x20000000,
//! lr: 0x08000435,
//! pc: 0x08000ab6,
//! xpsr: 0x61000000
//! }', examples/crash.rs:106:5
//! ```
//!
//! This register contains the address of the instruction that caused the exception. In GDB one can
//! disassemble the program around this address to observe the instruction that caused the
//! exception.
//!
//! ``` text
//! (gdb) disassemble/m 0x08000ab6
//! Dump of assembler code for function core::ptr::read_volatile:
//! 451 pub unsafe fn read_volatile<T>(src: *const T) -> T {
//! 0x08000aae <+0>: sub sp, #16
//! 0x08000ab0 <+2>: mov r1, r0
//! 0x08000ab2 <+4>: str r0, [sp, #8]
//!
//! 452 intrinsics::volatile_load(src)
//! 0x08000ab4 <+6>: ldr r0, [sp, #8]
//! -> 0x08000ab6 <+8>: ldr r0, [r0, #0]
//! 0x08000ab8 <+10>: str r0, [sp, #12]
//! 0x08000aba <+12>: ldr r0, [sp, #12]
//! 0x08000abc <+14>: str r1, [sp, #4]
//! 0x08000abe <+16>: str r0, [sp, #0]
//! 0x08000ac0 <+18>: b.n 0x8000ac2 <core::ptr::read_volatile+20>
//!
//! 453 }
//! 0x08000ac2 <+20>: ldr r0, [sp, #0]
//! 0x08000ac4 <+22>: add sp, #16
//! 0x08000ac6 <+24>: bx lr
//!
//! End of assembler dump.
//! ```
//!
//! `ldr r0, [r0, #0]` caused the exception. This instruction tried to load (read) a 32-bit word
//! from the address stored in the register `r0`. Looking again at the contents of `ExceptionFrame`
//! we see that the `r0` contained the address `0x2FFF_FFFF` when this instruction was executed.
//!
//! ---
#![no_main]
#![no_std]
use panic_halt as _;
use core::ptr;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
unsafe {
// read an address outside of the RAM region; this causes a HardFault exception
ptr::read_volatile(0x2FFF_FFFF as *const u32);
}
loop {}
}
//! Using a device crate
//!
//! Crates generated using [`svd2rust`] are referred to as device crates. These crates provide an
//! API to access the peripherals of a device.
//!
//! [`svd2rust`]: https://crates.io/crates/svd2rust
//!
//! This example depends on the [`stm32f3`] crate so you'll have to
//! uncomment it in your Cargo.toml.
//!
//! [`stm32f3`]: https://crates.io/crates/stm32f3
//!
//! ```
//! $ edit Cargo.toml && tail $_
//! [dependencies.stm32f3]
//! features = ["stm32f303", "rt"]
//! version = "0.7.1"
//! ```
//!
//! You also need to set the build target to thumbv7em-none-eabihf,
//! typically by editing `.cargo/config` and uncommenting the relevant target line.
//!
//! ---
#![no_main]
#![no_std]
#[allow(unused_extern_crates)]
use panic_halt as _;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m_rt::entry;
use cortex_m_semihosting::hprint;
use stm32f3::stm32f303::{interrupt, Interrupt, NVIC};
#[entry]
fn main() -> ! {
let p = cortex_m::Peripherals::take().unwrap();
let mut syst = p.SYST;
let mut nvic = p.NVIC;
nvic.enable(Interrupt::EXTI0);
// configure the system timer to wrap around every second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(8_000_000); // 1s
syst.enable_counter();
loop {
// busy wait until the timer wraps around
while !syst.has_wrapped() {}
// trigger the `EXTI0` interrupt
NVIC::pend(Interrupt::EXTI0);
}
}
#[interrupt]
fn EXTI0() {
hprint!(".").unwrap();
}
//! Overriding an exception handler
//!
//! You can override an exception handler using the [`#[exception]`][1] attribute.
//!
//! [1]: https://rust-embedded.github.io/cortex-m-rt/0.6.1/cortex_m_rt_macros/fn.exception.html
//!
//! ---
#![deny(unsafe_code)]
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m::peripheral::syst::SystClkSource;
use cortex_m::Peripherals;
use cortex_m_rt::{entry, exception};
use cortex_m_semihosting::hprint;
#[entry]
fn main() -> ! {
let p = Peripherals::take().unwrap();
let mut syst = p.SYST;
// configures the system timer to trigger a SysTick exception every second
syst.set_clock_source(SystClkSource::Core);
syst.set_reload(8_000_000); // period = 1s
syst.enable_counter();
syst.enable_interrupt();
loop {}
}
#[exception]
fn SysTick() {
hprint!(".").unwrap();
}
//! Prints "Hello, world!" on the host console using semihosting
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};
#[entry]
fn main() -> ! {
hprintln!("Hello, world!!").unwrap();
loop {}
}
//! Sends "Hello, world!" through the ITM port 0
//!
//! ITM is much faster than semihosting. Like 4 orders of magnitude or so.
//!
//! **NOTE** Cortex-M0 chips don't support ITM.
//!
//! You'll have to connect the microcontroller's SWO pin to the SWD interface. Note that some
//! development boards don't provide this option.
//!
//! You'll need [`itmdump`] to receive the message on the host plus you'll need to uncomment two
//! `monitor` commands in the `.gdbinit` file.
//!
//! [`itmdump`]: https://docs.rs/itm/0.2.1/itm/
//!
//! ---
#![no_main]
#![no_std]
use panic_halt as _;
use cortex_m::{iprintln, Peripherals};
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
let mut p = Peripherals::take().unwrap();
let stim = &mut p.ITM.stim[0];
iprintln!(stim, "Hello, world!");
loop {}
}
//! Changing the panicking behavior
//!
//! The easiest way to change the panicking behavior is to use a different [panic handler crate][0].
//!
//! [0]: https://crates.io/keywords/panic-impl
#![no_main]
#![no_std]
// Pick one of these panic handlers:
// `panic!` halts execution; the panic message is ignored
// use panic_halt as _;
// Reports panic messages to the host stderr using semihosting
// NOTE to use this you need to uncomment the `panic-semihosting` dependency in Cargo.toml
// use panic_semihosting as _;
// Logs panic messages using the ITM (Instrumentation Trace Macrocell)
// NOTE to use this you need to uncomment the `panic-itm` dependency in Cargo.toml
use panic_itm as _;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
panic!("Oops")
}
//! examples/rtt_timing.rs
#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]
use cortex_m::{asm, peripheral::DWT};
use panic_rtt_target as _;
use rtt_target::{rprintln, rtt_init_print};
use stm32f4;
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(mut cx: init::Context) {
rtt_init_print!();
rprintln!("init");
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
cx.core.DWT.enable_cycle_counter();
rprintln!("start timed_loop");
let (start, end) = timed_loop();
rprintln!(
"start {}, end {}, diff {}",
start,
end,
end.wrapping_sub(start)
);
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
};
// Forbid inlining and keeping name (symbol) readable.
#[inline(never)]
#[no_mangle]
fn timed_loop() -> (u32, u32) {
let start = DWT::get_cycle_count();
for _ in 0..10000 {
asm::nop();
}
let end = DWT::get_cycle_count();
(start, end)
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment