Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • Frappe/e7020e_2021
  • rognda-6/e7020e_2021
  • Klomega/e7020e_2021
  • pln/e7020e_2021
  • CarlOsterberg/e7020e_2021
  • jonjac-6/e7020e_2021
  • deux-babiri-futari/e7020e_2021
  • samgra-7/e7020e_2021
  • JosefUtbult/e7020e_2021
  • edwkll-7/e7020e_2021
10 results
Select Git revision
Show changes
Showing
with 3053 additions and 14 deletions
//! rtic_bare5.rs
//!
//! C Like Peripheral API
//!
//! What it covers:
//! - abstractions in Rust
//! - structs and implementations
#![no_std]
#![no_main]
extern crate cortex_m;
extern crate panic_semihosting;
// C like API...
mod stm32f40x {
#[allow(dead_code)]
use core::{cell, ptr};
#[rustfmt::skip]
mod address {
pub const PERIPH_BASE: u32 = 0x40000000;
pub const AHB1PERIPH_BASE: u32 = PERIPH_BASE + 0x00020000;
pub const RCC_BASE: u32 = AHB1PERIPH_BASE + 0x3800;
pub const GPIOA_BASE: u32 = AHB1PERIPH_BASE + 0x0000;
}
use address::*;
pub struct VolatileCell<T> {
pub value: cell::UnsafeCell<T>,
}
impl<T> VolatileCell<T> {
#[inline(always)]
pub fn read(&self) -> T
where
T: Copy,
{
unsafe { ptr::read_volatile(self.value.get()) }
}
#[inline(always)]
pub fn write(&self, value: T)
where
T: Copy,
{
unsafe { ptr::write_volatile(self.value.get(), value) }
}
}
// modify (reads, modifies a field, and writes the volatile cell)
//
// parameters:
// offset (field offset)
// width (field width)
// value (new value that the field should take)
//
impl VolatileCell<u32> {
#[inline(always)]
pub fn modify(&self, offset: u8, width: u8, value: u32) {
// your code here
}
}
#[repr(C)]
#[allow(non_snake_case)]
#[rustfmt::skip]
pub struct RCC {
pub CR: VolatileCell<u32>, // < RCC clock control register, Address offset: 0x00
pub PLLCFGR: VolatileCell<u32>, // < RCC PLL configuration register, Address offset: 0x04
pub CFGR: VolatileCell<u32>, // < RCC clock configuration register, Address offset: 0x08
pub CIR: VolatileCell<u32>, // < RCC clock interrupt register, Address offset: 0x0C
pub AHB1RSTR: VolatileCell<u32>, // < RCC AHB1 peripheral reset register, Address offset: 0x10
pub AHB2RSTR: VolatileCell<u32>, // < RCC AHB2 peripheral reset register, Address offset: 0x14
pub AHB3RSTR: VolatileCell<u32>, // < RCC AHB3 peripheral reset register, Address offset: 0x18
pub RESERVED0: VolatileCell<u32>, // < Reserved, 0x1C
pub APB1RSTR: VolatileCell<u32>, // < RCC APB1 peripheral reset register, Address offset: 0x20
pub APB2RSTR: VolatileCell<u32>, // < RCC APB2 peripheral reset register, Address offset: 0x24
pub RESERVED1: [VolatileCell<u32>; 2], // < Reserved, 0x28-0x2C
pub AHB1ENR: VolatileCell<u32>, // < RCC AHB1 peripheral clock register, Address offset: 0x30
pub AHB2ENR: VolatileCell<u32>, // < RCC AHB2 peripheral clock register, Address offset: 0x34
pub AHB3ENR: VolatileCell<u32>, // < RCC AHB3 peripheral clock register, Address offset: 0x38
pub RESERVED2: VolatileCell<u32>, // < Reserved, 0x3C
pub APB1ENR: VolatileCell<u32>, // < RCC APB1 peripheral clock enable register, Address offset: 0x40
pub APB2ENR: VolatileCell<u32>, // < RCC APB2 peripheral clock enable register, Address offset: 0x44
pub RESERVED3: [VolatileCell<u32>; 2], // < Reserved, 0x48-0x4C
pub AHB1LPENR: VolatileCell<u32>, // < RCC AHB1 peripheral clock enable in low power mode register, Address offset: 0x50
pub AHB2LPENR: VolatileCell<u32>, // < RCC AHB2 peripheral clock enable in low power mode register, Address offset: 0x54
pub AHB3LPENR: VolatileCell<u32>, // < RCC AHB3 peripheral clock enable in low power mode register, Address offset: 0x58
pub RESERVED4: VolatileCell<u32>, // < Reserved, 0x5C
pub APB1LPENR: VolatileCell<u32>, // < RCC APB1 peripheral clock enable in low power mode register, Address offset: 0x60
pub APB2LPENR: VolatileCell<u32>, // < RCC APB2 peripheral clock enable in low power mode register, Address offset: 0x64
pub RESERVED5: [VolatileCell<u32>; 2], // < Reserved, 0x68-0x6C
pub BDCR: VolatileCell<u32>, // < RCC Backup domain control register, Address offset: 0x70
pub CSR: VolatileCell<u32>, // < RCC clock control & status register, Address offset: 0x74
pub RESERVED6: [VolatileCell<u32>; 2], // < Reserved, 0x78-0x7C
pub SSCGR: VolatileCell<u32>, // < RCC spread spectrum clock generation register, Address offset: 0x80
pub PLLI2SCFGR: VolatileCell<u32>, // < RCC PLLI2S configuration register, Address offset: 0x84
}
impl RCC {
pub fn get() -> *mut RCC {
address::RCC_BASE as *mut RCC
}
}
#[repr(C)]
#[allow(non_snake_case)]
#[rustfmt::skip]
pub struct GPIOA {
pub MODER: VolatileCell<u32>, // < GPIO port mode register, Address offset: 0x00
pub OTYPER: VolatileCell<u32>, // < GPIO port output type register, Address offset: 0x04
pub OSPEEDR: VolatileCell<u32>, // < GPIO port output speed register, Address offset: 0x08
pub PUPDR: VolatileCell<u32>, // < GPIO port pull-up/pull-down register, Address offset: 0x0C
pub IDR: VolatileCell<u32>, // < GPIO port input data register, Address offset: 0x10
pub ODR: VolatileCell<u32>, // < GPIO port output data register, Address offset: 0x14
pub BSRRL: VolatileCell<u16>, // < GPIO port bit set/reset low register, Address offset: 0x18
pub BSRRH: VolatileCell<u16>, // < GPIO port bit set/reset high register, Address offset: 0x1A
pub LCKR: VolatileCell<u32>, // < GPIO port configuration lock register, Address offset: 0x1C
pub AFR: [VolatileCell<u32>;2], // < GPIO alternate function registers, Address offset: 0x20-0x24
}
impl GPIOA {
pub fn get() -> *mut GPIOA {
GPIOA_BASE as *mut GPIOA
}
}
}
use stm32f40x::*;
// see the Reference Manual RM0368 (www.st.com/resource/en/reference_manual/dm00096844.pdf)
// rcc, chapter 6
// gpio, chapter 8
fn wait(i: u32) {
for _ in 0..i {
cortex_m::asm::nop(); // no operation (cannot be optimized out)
}
}
// simple test of Your `modify`
//
fn test_modify() {
let t: VolatileCell<u32> = VolatileCell {
value: core::cell::UnsafeCell::new(0),
};
t.write(0);
assert!(t.read() == 0);
t.modify(3, 3, 0b10101);
// 10101
// ..0111000
// ---------
// 000101000
assert!(t.read() == 0b101 << 3);
t.modify(4, 3, 0b10001);
// 000101000
// 111
// 001
// 000011000
assert!(t.read() == 0b011 << 3);
//
// add more tests here if you like
}
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(_cx: init::Context) {
let rcc = unsafe { &mut *RCC::get() }; // get the reference to RCC in memory
let gpioa = unsafe { &mut *GPIOA::get() }; // get the reference to GPIOA in memory
// power on GPIOA
let r = rcc.AHB1ENR.read(); // read
rcc.AHB1ENR.write(r | 1 << (0)); // set enable
// configure PA5 as output
let r = gpioa.MODER.read() & !(0b11 << (5 * 2)); // read and mask
gpioa.MODER.write(r | 0b01 << (5 * 2)); // set output mode
// test_modify();
loop {
// set PA5 high
gpioa.BSRRH.write(1 << 5); // set bit, output hight (turn on led)
// alternatively to set the bit high we can
// read the value, or with PA5 (bit 5) and write back
// gpioa.ODR.write(gpioa.ODR.read() | (1 << 5));
wait(10_000);
// set PA5 low
gpioa.BSRRL.write(1 << 5); // clear bit, output low (turn off led)
// alternatively to clear the bit we can
// read the value, mask out PA5 (bit 5) and write back
// gpioa.ODR.write(gpioa.ODR.read() & !(1 << 5));
wait(10_000);
}
}
};
// 1. C like API.
// Using C the .h files are used for defining interfaces, like function signatures (prototypes),
// structs and macros (but usually not the functions themselves).
//
// Here is a peripheral abstraction quite similar to what you would find in the .h files
// provided by ST (and other companies). Actually, the file presented here is mostly a
// cut/paste/replace of the stm32f40x.h, just Rustified.
//
// In the loop we access PA5 through bit set/clear operations.
// Comment out those operations and uncomment the ODR based accesses.
// (They should have the same behavior, but is a bit less efficient.)
//
// Run and see that the program behaves the same.
//
// Commit your answers (bare5_1)
//
// 2. Extend the read/write API with a `modify` for u32, taking the
// - address (&mut u32),
// - field offset (in bits, u8),
// - field width (in bits, u8),
// - and value (u32).
//
// Implement and check that running `test` gives you expected behavior.
//
// Change the code into using your new `modify` API.
//
// Run and see that the program behaves the same.
//
// Discussion:
// As with arithmetic operations, default semantics differ in between
// debug/dev and release builds.
// In debug << rhs is checked, rhs must be less than 32 (for 32 bit datatypes).
//
// Notice, over-shifting (where bits are spilled) is always considered legal,
// its just the shift amount that is checked.
// There are explicit unchecked versions available if so wanted.
//
// We are now approaching a more "safe" to use API.
// What if we could automatically generate that from Vendors specifications (SVD files)?
// Wouldn't that be great?
//
// ** your answer here **
//
// Commit your answers (bare5_2)
//! rtic_bare6.rs
//!
//! Clocking
//!
//! What it covers:
//! - using svd2rust generated API
//! - using the stm32f4xx-hal to set clocks
//! - routing the clock to a PIN for monitoring by an oscilloscope
#![no_main]
#![no_std]
use panic_rtt_target as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use rtt_target::{rprintln, rtt_init_print};
use stm32f4xx_hal::{
prelude::*,
stm32::{self, GPIOC, RCC},
};
const OFFSET: u32 = 8_000_000;
#[rtic::app(device = stm32f4xx_hal::stm32, monotonic = rtic::cyccnt::CYCCNT, peripherals = true)]
const APP: () = {
struct Resources {
// late resources
GPIOA: stm32::GPIOA,
}
#[init(schedule = [toggle])]
fn init(cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let mut core = cx.core;
let device = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
core.DCB.enable_trace();
core.DWT.enable_cycle_counter();
// semantically, the monotonic timer is frozen at time "zero" during `init`
// NOTE do *not* call `Instant::now` in this context; it will return a nonsense value
let now = cx.start; // the start time of the system
// Schedule `toggle` to run 8e6 cycles (clock cycles) in the future
cx.schedule.toggle(now + OFFSET.cycles()).unwrap();
// setup LED
// power on GPIOA, RM0368 6.3.11
device.RCC.ahb1enr.modify(|_, w| w.gpioaen().set_bit());
// configure PA5 as output, RM0368 8.4.1
device.GPIOA.moder.modify(|_, w| w.moder5().bits(1));
clock_out(&device.RCC, &device.GPIOC);
let rcc = device.RCC.constrain();
let _clocks = rcc.cfgr.freeze();
// Set up the system clock. 48 MHz?
// let _clocks = rcc
// .cfgr
// .sysclk(48.mhz())
// .pclk1(24.mhz())
// .freeze();
// let _clocks = rcc
// .cfgr
// .sysclk(64.mhz())
// .pclk1(64.mhz())
// .pclk2(64.mhz())
// .freeze();
//
// let _clocks = rcc
// .cfgr
// .sysclk(84.mhz())
// .pclk1(42.mhz())
// .pclk2(64.mhz())
// .freeze();
// pass on late resources
init::LateResources {
GPIOA: device.GPIOA,
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
#[task(resources = [GPIOA], schedule = [toggle])]
fn toggle(cx: toggle::Context) {
static mut TOGGLE: bool = false;
rprintln!("toggle @ {:?}", Instant::now());
if *TOGGLE {
cx.resources.GPIOA.bsrr.write(|w| w.bs5().set_bit());
} else {
cx.resources.GPIOA.bsrr.write(|w| w.br5().set_bit());
}
*TOGGLE = !*TOGGLE;
cx.schedule.toggle(cx.scheduled + OFFSET.cycles()).unwrap();
}
extern "C" {
fn EXTI0();
}
};
// see the Reference Manual RM0368 (www.st.com/resource/en/reference_manual/dm00096844.pdf)
// rcc, chapter 6
// gpio, chapter 8
fn clock_out(rcc: &RCC, gpioc: &GPIOC) {
// output MCO2 to pin PC9
// mco2 : SYSCLK = 0b00
// mcopre : divide by 4 = 0b110
rcc.cfgr
.modify(|_, w| unsafe { w.mco2().bits(0b00).mco2pre().bits(0b110) });
// power on GPIOC, RM0368 6.3.11
rcc.ahb1enr.modify(|_, w| w.gpiocen().set_bit());
// MCO_2 alternate function AF0, STM32F401xD STM32F401xE data sheet
// table 9
// AF0, gpioc reset value = AF0
// configure PC9 as alternate function 0b10, RM0368 6.2.10
gpioc.moder.modify(|_, w| w.moder9().bits(0b10));
// otyper reset state push/pull, in reset state (don't need to change)
// ospeedr 0b11 = very high speed
gpioc.ospeedr.modify(|_, w| w.ospeedr9().bits(0b11));
}
// 0. Background reading:
//
// Clock trees:
// STM32F401xD STM32F401xE, section 3.11
// We have two AMBA High-performance Buses (APBs)
// APB1 low speed bus (max freq 42 MHz)
// APB2 high speed bus (max freq 84 MHz)
//
// RM0368 Section 6.2
// Some important/useful clock acronyms and their use:
//
// SYSCLK - the clock that drives the `core`
// HCLK - the clock that drives the AMBA bus(es), memory, DMA, trace unit, etc.
//
// Typically we set HCLK = SYSCLK / 1 (no pre-scale) for our applications
//
// FCLK - Free running clock running at HCLK
//
// CST - CoreSystemTimer drives the SysTick counter, HCLK/(1 or 8)
// PCLK1 - The clock driving the APB1 (<= 42 MHz)
// Timers on the APB1 bus will be triggered at PCLK1 * 2
// PCLK2 - The clock driving the APB2 (<= 84 MHz)
// Timers on the APB2 bus will be triggered at PCLK2
//
// Configuration:
//
// The `Cargo.toml` file defines your dependencies.
//
// [dependencies.stm32f4]
// version = "0.13.0"
// features = ["stm32f411", "rt"]
//
// [dependencies.stm32f4xx-hal]
// version = "0.8.3"
// features = ["rt", "stm32f411", "usb_fs"]
//
// The stm32f411 and f401 is essentially the same chip, the f411 is guaranteed
// up to 100MHz, but we can "overclock" the f401 to 100MHz if needed.
//
// The `features = ["stm32f411", "rt"]` selects the target MCU, and
// "rt" enables functionality for exception handling etc.
//
// The HAL provides a generic abstraction over the whole stm32f4 family.
//
// In our configuration we enable "stm32f411" with the "rt" feature
// and the "usb_fs" (for USB OnTheGo support).
//
// The HAL re-exports the selected "stm32f411" under the `stm32` path.
//
// Initialization:
//
// In the code, we first setup the DWT/CYCCNT for the Monotonic timer,
// and schedule a task to be run after `OFFSET` number of clock cycles.
//
// The `device.RCC.constrain()`, gives a default setting for the MCU RCC
// (Reset and Clock Control) peripheral.
// `rcc.cfgr.x.freeze()`, freezes the current (default) config.
//
// What is wrong with the following configurations?
//
// `rcc.cfgr.sysclk(64.mhz()).pclk1(64.mhz()).pclk2(64.mhz()).freeze()`;
//
// ** your answer here **
//
// `rcc.cfgr.sysclk(84.mhz()).pclk1(42.mhz()).pclk2(64.mhz()).freeze();`
//
// ** your answer here **
//
// Start `stm32cubemx` and select or create a project targeting stm32f401.
// Go to the graphical clock configuration view.
//
// Try to setup the clock according to:
//
// `rcc.cfgr.sysclk(64.mhz()).pclk1(64.mhz()).pclk2(64.mhz()).freeze()`;
//
// What happens?
//
// ** your answer here **
//
// Try to setup the clock according to:
//
// What happens?
//
// `rcc.cfgr.sysclk(84.mhz()).pclk1(42.mhz()).pclk2(64.mhz()).freeze();`
//
// ** your answer here **
//
// Commit your answers (bare6_0)
//
// 1. In this example you will use RTT.
//
// > cargo run --example rtic_bare6
//
// Confirm that your RTT traces the init, idle and led on/off.
//
// What is the (default) MCU (SYSCLK) frequency?
//
// ** your answer here **
//
// What is the (default) DWT CYCCNT frequency?
//
// ** your answer here **
//
// What is the frequency of blinking?
//
// ** your answer here **
//
// Commit your answers (bare6_1)
//
// 2. Now connect an oscilloscope to PC9, which is set to
// output the MCO2.
//
// Compute the value of SYSCLK based on the oscilloscope reading
//
// ** your answer here **
//
// What is the peak to peak (voltage) reading of the signal?
//
// ** your answer here **
//
// Make a folder called "pictures" in your git project.
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_16mhz_high_speed".
//
// Commit your answers (bare6_2)
//
// 3. Now run the example in 48Mz, by commenting out line 56, and un-commenting
// lines 58-63.
//`
// What is the frequency of blinking?
//
// ** your answer here **
//
// Now change the constant `OFFSET` so you get the same blinking frequency as in 1.
// Test and validate that you got the desired behavior.
//
// Commit your answers (bare6_3)
//
// 4. Repeat experiment 2
//
// What is the frequency of MCO2 read by the oscilloscope?
//
// ** your answer here **
//
// Compute the value of SYSCLK based on the oscilloscope reading.
//
// ** your answer here **
//
// What is the peak to peak reading of the signal?
//
// ** your answer here **
//
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_48mhz_high_speed".
//
// Commit your answers (bare6_4)
//
// 5. In the `clock_out` function, the setup of registers is done through
// setting bit-pattens manually, e.g.
// rcc.cfgr
// .modify(|_, w| unsafe { w.mco2().bits(0b00).mco2pre().bits(0b110) });
//
// However based on the vendor SVD file the svd2rust API provides
// a better abstraction, based on pattern enums and functions.
//
// To view the API you can generate documentation for your crate:
//
// > cargo doc --open
//
// By searching for `mco2` you find the enumerations and functions.
// So here
// `w.mco2().bits{0b00}` is equivalent to
// `w.mco2().sysclk()` and improves readability.
//
// Replace all bit-patterns used in `clock_out` by the function name equivalents.
// (alternatively, use the enum values.)
//
// Test that the application still runs as before.
//
// Commit your code (bare6_5)
//
// 6. Now reprogram the PC9 to be "Low Speed", and re-run at 48Mz.
//
// Did the frequency change in comparison to assignment 5?
//
// ** your answer here **
//
// What is the peak to peak reading of the signal (and why did it change)?
//
// ** your answer here **
//
// Make a screen dump or photo of the oscilloscope output.
// Save the the picture as "bare_6_48mhz_low_speed".
//
// Commit your answers (bare6_6)
//
// 7. Try setting the clocks according to:
//
// `rcc.cfgr.sysclk(64.mhz()).pclk1(64.mhz()).pclk2(64.mhz()).freeze()`;
//
// Does the code compile?
//
// ** your answer here **
//
// What happens at run-time?
//
// ** your answer here **
//
// Try setting the clocks according to:
//
// `rcc.cfgr.sysclk(84.mhz()).pclk1(42.mhz()).pclk2(64.mhz()).freeze();`
//
// Does the code compile?
//
// ** your answer here **
//
// What happens at run-time?
//
// ** your answer here **
//
// Is that a correct?
//
// Optional: If you find it incorrect, file an issue to `stm32f4xx-hal` describing the problem.
// (Remember always check already open issues, and add to existing if related.)
//
// 7. Discussion
//
// In this exercise, you have learned to use the stm32f4xx-hal
// to set the clock speed of your MCU.
//
// You have also learned how you can monitor/validate MCU clock(s) on pin(s)
// connected to an oscilloscope.
//
// You have also learned how you can improve readability of your code
// by leveraging the abstractions provided by the PAC.
//
// As mentioned before the PACs are machine generated by `svd2rust`
// from vendor provided System View Descriptions (SVDs).
//
// The PACs provide low level peripheral access abstractions, while
// the HALs provide higher level abstractions and functionality.
//! rtic_bare7.rs
//!
//! HAL OutputPin abstractions
//!
//! What it covers:
//! - using embedded hal, and the OutputPin abstraction
#![no_main]
#![no_std]
use panic_rtt_target as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use rtt_target::{rprintln, rtt_init_print};
use stm32f4xx_hal::stm32;
use stm32f4xx_hal::{
gpio::{gpioa::PA5, Output, PushPull},
prelude::*,
};
use embedded_hal::digital::v2::{OutputPin, ToggleableOutputPin};
const OFFSET: u32 = 8_000_000;
#[rtic::app(device = stm32f4xx_hal::stm32, monotonic = rtic::cyccnt::CYCCNT, peripherals = true)]
const APP: () = {
struct Resources {
// late resources
GPIOA: stm32::GPIOA,
// led: PA5<Output<PushPull>>,
}
#[init(schedule = [toggle])]
fn init(cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let mut core = cx.core;
let device = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
core.DCB.enable_trace();
core.DWT.enable_cycle_counter();
// semantically, the monotonic timer is frozen at time "zero" during `init`
// NOTE do *not* call `Instant::now` in this context; it will return a nonsense value
let now = cx.start; // the start time of the system
// Schedule `toggle` to run 8e6 cycles (clock cycles) in the future
cx.schedule.toggle(now + OFFSET.cycles()).unwrap();
// power on GPIOA, RM0368 6.3.11
device.RCC.ahb1enr.modify(|_, w| w.gpioaen().set_bit());
// configure PA5 as output, RM0368 8.4.1
device.GPIOA.moder.modify(|_, w| w.moder5().bits(1));
// pass on late resources
init::LateResources {
GPIOA: device.GPIOA,
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
#[task(resources = [GPIOA], schedule = [toggle])]
fn toggle(cx: toggle::Context) {
static mut TOGGLE: bool = false;
rprintln!("toggle @ {:?}", Instant::now());
if *TOGGLE {
cx.resources.GPIOA.bsrr.write(|w| w.bs5().set_bit());
} else {
cx.resources.GPIOA.bsrr.write(|w| w.br5().set_bit());
}
*TOGGLE = !*TOGGLE;
cx.schedule.toggle(cx.scheduled + OFFSET.cycles()).unwrap();
}
extern "C" {
fn EXTI0();
}
};
fn _toggle_generic<E>(led: &mut dyn OutputPin<Error = E>, toggle: &mut bool) {
if *toggle {
led.set_high().ok();
} else {
led.set_low().ok();
}
*toggle = !*toggle;
}
fn _toggleable_generic<E>(led: &mut dyn ToggleableOutputPin<Error = E>) {
led.toggle().ok();
}
// 1. In this example you will use RTT.
//
// > cargo run --example rtic_bare7
//
// Look in the generated documentation for `set_high`/`set_low`.
// (You created documentation for your dependencies in previous exercise
// so you can just search (press `S`) for `OutputPin`).
// You will find that these methods are implemented for `Output` pins.
//
// Now change your code to use these functions instead of the low-level GPIO API.
//
// HINTS:
// - A GPIOx peripheral can be `split` into individual PINs Px0..Px15).
// - A Pxy, can be turned into an `Output` by `into_push_pull_output`.
// - You may optionally set other pin properties as well (such as `speed`).
// - An `Output` pin provides `set_low`/`set_high`
// - Instead of passing `GPIO` resource to the `toggle` task pass the
// `led: PA5<Output<PushPull>>` resource instead.
//
// Comment your code to explain the steps taken.
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_1)
//
// 2. Further generalizations:
//
// Now look at the documentation for `embedded_hal::digital::v2::OutputPin`.
//
// You see that the OutputPin trait defines `set_low`/`set_high` functions.
// Your task is to alter the code to use the `set_low`/`set_high` API.
//
// The function `_toggle_generic` is generic to any object that
// implements the `OutputPin<Error = E>` trait.
//
// Digging deeper we find the type parameter `E`, which in this case
// is left generic (unbound).
//
// It will be instantiated with a concrete type argument when called.
//
// Our `PA5<Output<PushPull>>` implements `OutputPin` trait, thus
// we can pass the `led` resource to `_toggle_generic`.
//
// The error type is given by the stm32f4xx-hal implementation:
// where `core::convert::Infallible` is used to indicate
// there are no errors to be expected (hence infallible).
//
// Additionally, `_toggle_generic` takes a mutable reference
// `toggle: &mut bool`, so you need to pass your `TOGGLE` variable.
//
// As you see, `TOGGLE` holds the "state", switching between
// `true` and `false` (to make your led blink).
//
// Change your code into using the `_toggle_generic` function.
// (You may rename it to `toggle_generic` if wished.)
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_2)
//
// 3. What about the state?
//
// In your code `TOGGLE` holds the "state". However, the underlying
// hardware ALSO holds the state (if the corresponding bit is set/cleared).
//
// What if we can leverage that, and guess what we can!!!!
//
// Look at the documentation for `embedded_hal::digital::v2::ToggleableOutputPin`,
// and the implementation of:
//
// fn _toggleable_generic(led: &mut dyn ToggleableOutputPin<Error = Infallible>) {
// led.toggle().ok();
// }
//
// The latter does not take any state variable, instead it directly `toggle()`
// the `ToggleableOutputPin`.
//
// Now alter your code to leverage on the `_toggleable_generic` function.
// (You should be able to remove the `TOGGLE` state variable altogether.)
//
// Confirm that your implementation correctly toggles the LED as in
// previous exercise.
//
// Commit your code (bare7_3)
//
// 4. Discussion:
//
// In this exercise you have gone from a very hardware specific implementation,
// to leveraging abstractions (batteries included).
//
// Your final code amounts to "configuration" rather than "coding".
//
// This reduces the risk of errors (as you let the libraries do the heavy lifting).
//
// This also improves code-re use. E.g., if you were to do something less
// trivial then merely toggling you can do that in a generic manner,
// breaking out functionality into "components" re-usable in other applications.
//
// Of course the example is trivial, you don't gain much here, but the principle
// is the same behind drivers for USART communication, USB, PMW3389 etc.
//
// 5. More details:
//
// Looking closer at the implementation:
// `led: &mut dyn OutputPin<Error = E>`
//
// You may ask what kind of mumbo jumbo is at play here.
//
// This is the way to express that we expect a mutable reference to a trait object
// that implements the `OutputPin`. Since we will change the underlying object
// (in this case an GPIOA pin 5) the reference needs to be mutable.
//
// Trait objects are further explained in the Rust book.
// The `dyn` keyword indicates dynamic dispatch (through a VTABLE).
// https://doc.rust-lang.org/std/keyword.dyn.html
//
// Notice: the Rust compiler (rustc + LLVM) is really smart. In many cases
// it can analyse the call chain, and conclude the exact trait object type at hand.
// In such cases the dynamic dispatch is turned into a static dispatch
// and the VTABLE is gone, and we have a zero-cost abstraction.
//
// If the trait object is stored for e.g., in an array along with other
// trait objects (of different concrete type), there is usually no telling
// the concrete type of each element, and we will have dynamic dispatch.
// Arguably, this is also a zero-cost abstraction, as there is no (obvious)
// way to implement it more efficiently. Remember, zero-cost is not without cost
// just that it is as good as it possibly gets (you can't make it better by hand).
//
// You can also force the compiler to deduce the type at compile time, by using
// `impl` instead of `dyn`, if you are sure you don't want the compiler to
// "fallback" to dynamic dispatch.
//
// You might find Rust to have long compile times. Yes you are right,
// and this type of deep analysis done in release mode is part of the story.
// On the other hand, the aggressive optimization allows us to code
// in a generic high level fashion and still have excellent performing binaries.
//! bare8.rs
//!
//! Serial
//!
//! What it covers:
//! - serial communication
//! - bad design
#![no_main]
#![no_std]
use panic_rtt_target as _;
use nb::block;
use stm32f4xx_hal::{
gpio::{gpioa::PA, Output, PushPull},
prelude::*,
serial::{config::Config, Rx, Serial, Tx},
stm32::USART2,
};
use rtic::app;
use rtt_target::{rprintln, rtt_init_print};
#[app(device = stm32f4xx_hal::stm32, peripherals = true)]
const APP: () = {
struct Resources {
// Late resources
TX: Tx<USART2>,
RX: Rx<USART2>,
}
// init runs in an interrupt free section
#[init]
fn init(cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let device = cx.device;
let rcc = device.RCC.constrain();
// 16 MHz (default, all clocks)
let clocks = rcc.cfgr.freeze();
let gpioa = device.GPIOA.split();
let tx = gpioa.pa2.into_alternate_af7();
let rx = gpioa.pa3.into_alternate_af7();
let serial = Serial::usart2(
device.USART2,
(tx, rx),
Config::default().baudrate(115_200.bps()),
clocks,
)
.unwrap();
// Separate out the sender and receiver of the serial port
let (tx, rx) = serial.split();
// Late resources
init::LateResources { TX: tx, RX: rx }
}
// idle may be interrupted by other interrupts/tasks in the system
#[idle(resources = [RX, TX])]
fn idle(cx: idle::Context) -> ! {
let rx = cx.resources.RX;
let tx = cx.resources.TX;
loop {
match block!(rx.read()) {
Ok(byte) => {
rprintln!("Ok {:?}", byte);
tx.write(byte).unwrap();
}
Err(err) => {
rprintln!("Error {:?}", err);
}
}
}
}
};
// 0. Background
//
// The Nucleo st-link programmer provides a Virtual Com Port (VCP).
// It is connected to the PA2(TX)/PA3(RX) pins of the stm32f401/411.
// On the host, the VCP is presented under `/dev/ttyACMx`, where
// `x` is an enumerated number (ff 0 is busy it will pick 1, etc.)
//
// 1. In this example we use RTT.
//
// > cargo run --example rtic_bare8
//
// Start a terminal program, e.g., `moserial`.
// Connect to the port
//
// Device /dev/ttyACM0
// Baude Rate 115200
// Data Bits 8
// Stop Bits 1
// Parity None
//
// This setting is typically abbreviated as 115200 8N1.
//
// Send a single character (byte), (set the option `No end` in `moserial`).
// Verify that sent bytes are echoed back, and that RTT tracing is working.
//
// Try sending "a", don't send the quotation marks, just a.
//
// What do you receive in `moserial`?
//
// ** your answer here **
//
// What do you receive in the RTT terminal?
//
// ** your answer here **
//
// Try sending: "abcd" as a single sequence, don't send the quotation marks, just abcd.
//
// What did you receive in `moserial`?
//
// ** your answer here **
//
// What do you receive in the RTT terminal?
//
// ** your answer here **
//
// What do you believe to be the problem?
//
// Hint: Look at the code in `idle` what does it do?
//
// ** your answer here **
//
// Experiment a bit, what is the max length sequence you can receive without errors?
//
// ** your answer here **
//
// Commit your answers (bare8_1)
//
// 2. Add a local variable `received` that counts the number of bytes received.
// Add a local variable `errors` that counts the number of errors.
//
// Adjust the RTT trace to print the added information inside the loop.
//
// Compile/run reconnect, and verify that it works as intended.
//
// Commit your development (bare8_2)
//
// 3. Experiment a bit, what is the max length sequence you can receive without errors?
//
// ** your answer here **
//
// How did the added tracing/instrumentation affect the behavior?
//
// ** your answer here **
//
// Commit your answer (bare8_3)
//
// 4. Now try compile and run the same experiment 3 but in --release mode.
//
// > cargo run --example rtic_bare8 --release
//
// Reconnect your `moserial` terminal.
//
// Experiment a bit, what is the max length sequence you can receive without errors?
//
// ** your answer here **
//
// Commit your answer (bare8_4)
//
// 5. Discussion
//
// (If you ever used Arduino, you might feel at home with the `loop` and poll design.)
//
// Typically, this is what you can expect from a polling approach, if you
// are not very careful what you are doing. This exemplifies a bad design.
//
// Loss of data might be Ok for some applications but this typically NOT what we want.
//
// (With that said, Arduino gets away with some simple examples as their drivers do
// internal magic - buffering data etc.)
//! bare8.rs
//!
//! Serial
//!
//! What it covers:
#![no_main]
#![no_std]
use panic_rtt_target as _;
use stm32f4xx_hal::{
prelude::*,
serial::{config::Config, Event, Rx, Serial, Tx},
stm32::USART2,
};
use rtic::app;
use rtt_target::{rprintln, rtt_init_print};
#[app(device = stm32f4xx_hal::stm32, peripherals = true)]
const APP: () = {
struct Resources {
// Late resources
TX: Tx<USART2>,
RX: Rx<USART2>,
}
// init runs in an interrupt free section
#[init]
fn init(cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let device = cx.device;
let rcc = device.RCC.constrain();
// 16 MHz (default, all clocks)
let clocks = rcc.cfgr.freeze();
let gpioa = device.GPIOA.split();
let tx = gpioa.pa2.into_alternate_af7();
let rx = gpioa.pa3.into_alternate_af7();
let mut serial = Serial::usart2(
device.USART2,
(tx, rx),
Config::default().baudrate(115_200.bps()),
clocks,
)
.unwrap();
// generate interrupt on Rxne
serial.listen(Event::Rxne);
// Separate out the sender and receiver of the serial port
let (tx, rx) = serial.split();
// Late resources
init::LateResources { TX: tx, RX: rx }
}
// idle may be interrupted by other interrupts/tasks in the system
#[idle()]
fn idle(_cx: idle::Context) -> ! {
loop {
continue;
}
}
// capacity sets the size of the input buffer (# outstanding messages)
#[task(resources = [TX], priority = 1, capacity = 128)]
fn rx(cx: rx::Context, data: u8) {
let tx = cx.resources.TX;
tx.write(data).unwrap();
rprintln!("data {}", data);
}
// Task bound to the USART2 interrupt.
#[task(binds = USART2, priority = 2, resources = [RX], spawn = [rx])]
fn usart2(cx: usart2::Context) {
let rx = cx.resources.RX;
let data = rx.read().unwrap();
cx.spawn.rx(data).unwrap();
}
extern "C" {
fn EXTI0();
}
};
// 0. Background
//
// As seen in the prior example, you may loose data unless polling frequently enough.
// Let's try an interrupt driven approach instead.
//
// In init we just add:
//
// // generate interrupt on Rxne
// serial.listen(Event::Rxne);
//
// This causes the USART hardware to generate an interrupt when data is available.
//
// // Task bound to the USART2 interrupt.
// #[task(binds = USART2, priority = 2, resources = [RX], spawn = [rx])]
// fn usart2(cx: usart2::Context) {
// let rx = cx.resources.RX;
// let data = rx.read().unwrap();
// cx.spawn.rx(data).unwrap();
// }
//
// The `usart2` task will be triggered, and we read one byte from the internal
// buffer in the USART2 hardware. (panic if something goes bad)
//
// We send the read byte to the `rx` task (by `cx.spawn.rx(data).unwrap();`)
// (We panic if the capacity of the message queue is reached)
//
// // capacity sets the size of the input buffer (# outstanding messages)
// #[task(resources = [TX], priority = 1, capacity = 128)]
// fn rx(cx: rx::Context, data: u8) {
// let tx = cx.resources.TX;
// tx.write(data).unwrap();
// rprintln!("data {}", data);
// }
//
// Here we echo the data back, `tx.write(data).unwrap();` (panic if usart is busy)
// We then trace the received data `rprintln!("data {}", data);`
//
// The `priority = 2` gives the `usart2` task the highest priority
// (to ensure that we don't miss data).
//
// The `priority = 1` gives the `rx` task a lower priority.
// Here we can take our time and process the data.
//
// `idle` runs at priority 0, lowest priority in the system.
// Here we can do some background job, when nothing urgent is happening.
//
// This is an example of a good design!
//
// 1. In this example we use RTT.
//
// > cargo run --example rtic_bare9
//
// Try breaking it!!!!
// Throw any data at it, and see if you could make it panic!
//
// Were you able to crash it?
//
// ** your answer here **
//
// Notice, the input tracing in `moserial` seems broken, and may loose data.
// So don't be alarmed if data is missing, its a GUI tool after all.
//
// If you want to sniff the `ttyACM0`, install e.g., `interceptty` and run
// > interceptty /dev/ttyACM0
//
// In another terminal, you can do:
// > cat examples/rtic_bare9.rs > /dev/ttyACM0
//
// Incoming data will be intercepted/displayed by `interceptty`.
// (In the RTT trace you will see that data is indeed arriving to the target.)
//
// Commit your answer (bare9_1)
//
// 2. Now, re-implement the received and error counters from previous exercise.
//
// Good design:
// - Defer any tracing to lower priority task/tasks
// (you may introduce an error task at low priority).
//
// - State variables can be introduced either locally (static mut), or
// by using a resource.
//
// If a resource is shared among tasks of different priorities:
// The highest priority task will have direct access to the data,
// the lower priority task(s) will need to lock the resource first.
//
// Check the RTIC book, https://rtic.rs/0.5/book/en/by-example
// regarding resources, software tasks, error handling etc.
//
// Test that your implementation works and traces number of
// bytes received and errors encountered.
//
// If implemented correctly, it should be very hard (or impossible)
// to get an error.
//
// You can force an error by doing some "stupid delay" (faking workload),
// e.g., burning clock cycles using `cortex_m::asm::delay` in the
// `rx` task. Still you need to saturate the capacity (128 bytes).
//
// To make errors easier to produce, reduce the capacity.
//
// Once finished, comment your code.
//
// Commit your code (bare9_2)
//
// 3. Discussion
//
// Here you have used RTIC to implement a highly efficient and good design.
//
// Tasks in RTIC are run-to-end, with non-blocking access to resources.
// (Even `lock` is non-blocking, isn't that sweet?)
//
// Tasks in RTIC are scheduled according to priorities.
// (A higher priority task `H` always preempts lower priority task `L` running,
// unless `L` holds a resource with higher or equal ceiling as `H`.)
//
// Tasks in RTIC can spawn other tasks.
// (`capacity` sets the message queue size.)
//
// By design RTIC guarantees race- and deadlock-free execution.
//
// It also comes with theoretical underpinning for static analysis.
// - task response time
// - overall schedulability
// - stack memory analysis
// - etc.
//
// RTIC leverages on the zero-cost abstractions in Rust,
// and the implementation offers best in class performance.
// run with gdb, either from terminal or in vscode
//
// from terminal:
// start openocd in separate terminal
// > openocd -f openocd.cfg
//
// start gdb
// > arm-none-eabi-gdb target/thumbv7em-none-eabihf/debug/examples/rtic_blinky -x openocd.gdb
#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
......@@ -5,7 +14,7 @@
use cortex_m::peripheral::DWT;
use cortex_m_semihosting::hprintln;
use panic_rtt_target as _;
use panic_semihosting as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use stm32f4xx_hal::stm32;
......
#![no_main]
#![no_std]
use core::ptr;
use panic_halt as _;
use stm32f4;
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(_cx: init::Context) {
unsafe {
// read an address outside of the RAM region; this causes a HardFault exception
ptr::read_volatile(0x2FFF_FFFF as *const u32);
}
}
};
// Here you can inspect the call stack (found to the left in vscode).
//
// The default implementation for `HardFault` exception is just an infinite loop.
// Press the pause symbol to halt the processor:
//
// The upmost item in CALL STACK, is the current frame:
// (the infinite loop loop)
//
// The bottom most item is the start of the program (the generated main).
//
// In between, you can see the calls made
// main->init->read_volatile->HardFault->compiler_fence
//
// Click on init, and you will see that line 14 in this application caused the
// erroneous read operation.
#![no_main]
#![no_std]
use cortex_m_semihosting::hprintln;
use panic_halt as _;
use stm32f4;
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(_cx: init::Context) {
for a in 0..11 {
hprintln!("RTIC Says Hello, to all students!! {}", a).unwrap();
}
}
};
//! Changing the panicking behavior
//!
//! The easiest way to change the panicking behavior is to use a different [panic handler crate][0].
//!
//! [0]: https://crates.io/keywords/panic-impl
#![no_main]
#![no_std]
use cortex_m_semihosting::hprintln;
// Pick one of these panic handlers:
// `panic!` halts execution; the panic message is ignored
// use panic_halt as _;
// Reports panic messages to the host stderr using semihosting
// NOTE to use this you need to uncomment the `panic-semihosting` dependency in Cargo.toml
// use panic_semihosting as _;
use panic_semihosting as _;
// Logs panic messages using the ITM (Instrumentation Trace Macrocell)
// NOTE to use this you need to uncomment the `panic-itm` dependency in Cargo.toml
use panic_itm as _;
// use panic_itm as _;
use cortex_m_rt::entry;
use stm32f4 as _;
use stm32f4;
#[entry]
fn main() -> ! {
panic!("Oops")
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(_cx: init::Context) {
for i in 0..10 {
hprintln!("RTIC Says Hello, world {}!!", 100 / (5 - i)).ok();
}
}
};
//! examples/rtt-pwm-sine.rs
//! cargo run --examples rtt-pwm-sine --release
// #![deny(unsafe_code)]
// #![deny(warnings)]
#![no_main]
#![no_std]
use cortex_m::{asm, peripheral::DWT};
use panic_rtt_target as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use rtt_target::{rprint, rprintln, rtt_init_print};
use core::f32::consts::PI;
use micromath::F32Ext;
use stm32f4xx_hal::{
bb,
dwt::Dwt,
gpio::Speed,
gpio::{
gpiob::{PB10, PB4},
gpioc::{PC2, PC3},
Alternate, Output, PushPull,
},
prelude::*,
pwm,
rcc::Clocks,
spi::Spi,
stm32,
};
use embedded_hal::spi::MODE_3;
use panic_rtt_target as _;
use app::{
pmw3389::{self, Register},
DwtDelay,
};
type PMW3389T = pmw3389::Pmw3389<
Spi<
stm32f4xx_hal::stm32::SPI2,
(
PB10<Alternate<stm32f4xx_hal::gpio::AF5>>,
PC2<Alternate<stm32f4xx_hal::gpio::AF5>>,
PC3<Alternate<stm32f4xx_hal::gpio::AF5>>,
),
>,
PB4<Output<PushPull>>,
>;
include!(concat!(env!("OUT_DIR"), "/sin_abs_const.rs"));
#[rtic::app(device = stm32f4xx_hal::stm32, monotonic = rtic::cyccnt::CYCCNT, peripherals = true)]
const APP: () = {
struct Resources {
// late resources
TIM1: stm32::TIM1,
pmw3389: PMW3389T,
}
#[init(schedule = [pwm_out, poll])]
fn init(mut cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let device = cx.device;
let mut core = cx.core;
// Initialize (enable) the monotonic timer (CYCCNT)
core.DCB.enable_trace();
core.DWT.enable_cycle_counter();
let rcc = device.RCC.constrain();
// Set up the system clock. 96 MHz?
let clocks = rcc.cfgr.sysclk(96.mhz()).pclk1(24.mhz()).freeze();
// Configure SPI
// spi2
// sck - pb10, (yellow)
// miso - pc2, (red)
// mosi - pc3, (orange)
// ncs - pb4, (long yellow)
// motion - (brown)
//
// +5, (white)
// gnd, (black)
cortex_m::asm::dsb(); // chip errata
let gpiob = device.GPIOB.split();
cortex_m::asm::dsb(); // chip errata
let gpioc = device.GPIOC.split();
cortex_m::asm::dsb(); // chip errata
let sck = gpiob.pb10.into_alternate_af5().set_speed(Speed::VeryHigh);
let miso = gpioc.pc2.into_alternate_af5().set_speed(Speed::High);
let mosi = gpioc.pc3.into_alternate_af5().set_speed(Speed::High);
let cs = gpiob.pb4.into_push_pull_output().set_speed(Speed::High);
let spi = Spi::spi2(
device.SPI2,
(sck, miso, mosi),
MODE_3,
stm32f4xx_hal::time::KiloHertz(2000).into(),
clocks,
);
let delay = DwtDelay::new(&mut core.DWT, clocks);
let mut pmw3389 = pmw3389::Pmw3389::new(spi, cs, delay).unwrap();
// // set in burst mode
// pmw3389.write_register(Register::MotionBurst, 0x00).unwrap();
// setup TIM1 as PWM (for implementing an 8 bit DA)
let gpioa = device.GPIOA.split();
cortex_m::asm::dsb(); // chip errata
// we set the pins to VeryHigh to get the sharpest waveform possible
// (rise and fall times should have similar characteristics)
let _channels = (
gpioa.pa8.into_alternate_af1().set_speed(Speed::VeryHigh),
gpioa.pa9.into_alternate_af1().set_speed(Speed::VeryHigh),
);
// Setup PWM RAW
let tim1 = device.TIM1;
// Here we need unsafe as we are "stealing" the RCC peripheral
// At this point it has been contrained into SysConf and used to set clocks
let rcc = unsafe { &(*stm32::RCC::ptr()) };
rcc.apb2enr.modify(|_, w| w.tim1en().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().clear_bit());
// Setup chanel 1 and 2 as pwm_mode1
tim1.ccmr1_output()
.modify(|_, w| w.oc1pe().set_bit().oc1m().pwm_mode1());
tim1.ccmr1_output()
.modify(|_, w| w.oc2pe().set_bit().oc2m().pwm_mode1());
// The reference manual is a bit ambiguous about when enabling this bit is really
// necessary, but since we MUST enable the pre-load for the output channels then we
// might as well enable for the auto-reload too
tim1.cr1.modify(|_, w| w.arpe().set_bit());
let clk = clocks.pclk2().0 * if clocks.ppre2() == 1 { 1 } else { 2 };
// check the actual clock setup
rprintln!("clk {}", clk);
// we want maximum performance, thus we set the prescaler to 0
let pre = 0;
rprintln!("pre {}", pre);
tim1.psc.write(|w| w.psc().bits(pre));
// we want 8 bits of resolution
// so our ARR = 2^8 - 1 = 256 - 1 = 255
let arr = 255;
rprintln!("arr {}", arr);
tim1.arr.write(|w| unsafe { w.bits(arr) });
// Trigger update event to load the registers
tim1.cr1.modify(|_, w| w.urs().set_bit());
tim1.egr.write(|w| w.ug().set_bit());
tim1.cr1.modify(|_, w| w.urs().clear_bit());
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set output enable for channels 1 and 2
tim1.ccer.write(|w| w.cc1e().set_bit().cc2e().set_bit());
// Setup the timer
tim1.cr1.write(|w| {
w.cms()
.bits(0b00) // edge aligned mode
.dir() // counter used as up-counter
.clear_bit()
.opm() // one pulse mode
.clear_bit()
.cen() // enable counter
.set_bit()
});
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set duty cycle of Channels
tim1.ccr1.write(|w| unsafe { w.ccr().bits(128) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(128) });
// Set preload for the CCx
tim1.cr2.write(|w| w.ccpc().set_bit());
// Enable update events
tim1.dier.write(|w| w.uie().enabled());
tim1.sr.modify(|_, w| w.uif().clear());
// just to check that we actually get update events
while tim1.sr.read().uif().is_clear() {
rprint!("-");
}
rprintln!("here");
tim1.sr.modify(|_, w| w.uif().clear());
cx.schedule.pwm_out(cx.start + PWM_CYCLES.cycles()).ok();
cx.schedule.poll(cx.start + POLL_CYCLES.cycles()).ok();
// pass on late resources
init::LateResources {
TIM1: tim1,
pmw3389,
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
// panic!("panic");
loop {
asm::nop()
}
}
#[task(priority = 1)]
fn trace(_cx: trace::Context, pos_x: i64, pos_y: i64) {
static mut OLD_POS_X: i64 = 0;
static mut OLD_POS_Y: i64 = 0;
rprintln!(
"@{:?}, pos_x {:010}, diff {:010}, pos_y {:010}, diff {:010} ",
Instant::now(),
pos_x,
pos_x.wrapping_sub(*OLD_POS_X),
pos_y,
pos_y.wrapping_sub(*OLD_POS_Y),
);
*OLD_POS_X = pos_x;
*OLD_POS_Y = pos_y;
}
#[task(priority = 2, resources = [pmw3389], schedule = [poll], spawn = [trace])]
fn poll(cx: poll::Context) {
static mut COUNTER: u32 = 0;
static mut POS_X: i64 = 0;
static mut POS_Y: i64 = 0;
// run each ms
*COUNTER += 1;
if *COUNTER == 1000 {
// run each s
cx.spawn.trace(*POS_X, *POS_Y).unwrap();
*COUNTER = 0;
}
let pmw3389 = cx.resources.pmw3389;
//write 0x01 to Motion register and read from it to freeze the motion values and make them available
pmw3389.write_register(Register::Motion, 0x01).unwrap();
let _ = pmw3389.read_register(Register::Motion).unwrap();
let xl: u8 = pmw3389.read_register(Register::DeltaXL).unwrap();
let xh: u8 = pmw3389.read_register(Register::DeltaXH).unwrap();
let yl = pmw3389.read_register(Register::DeltaYL).unwrap();
let yh = pmw3389.read_register(Register::DeltaYH).unwrap();
// let (x, _y) = cx.resources.pmw3389.read_status().unwrap();
*POS_X += (((xl as u16) | ((xh as u16) << 8)) as i16) as i64;
*POS_Y += (((yl as u16) | ((yh as u16) << 8)) as i16) as i64;
// task should run each second N ms (96_000 cycles at 96MHz)
cx.schedule
.poll(cx.scheduled + POLL_CYCLES.cycles())
.unwrap();
}
#[task(priority = 3, resources = [TIM1], schedule = [pwm_out])]
fn pwm_out(cx: pwm_out::Context) {
static mut INDEX: u16 = 0;
static mut LEFT: u16 = 0;
static mut RIGHT: u16 = 0;
// static mut FLOAT: u16 = 0;
let tim1 = cx.resources.TIM1;
tim1.ccr1.write(|w| unsafe { w.ccr().bits(*LEFT) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(*RIGHT) });
// tim1.ccr2.write(|w| unsafe { w.ccr().bits(*FLOAT) });
cx.schedule
.pwm_out(cx.scheduled + PWM_CYCLES.cycles())
.unwrap();
*INDEX = (*INDEX).wrapping_add(1_000);
// let f: f32 = (*INDEX as f32 * 2.0 * PI) / 65536.0;
// *FLOAT = (128.0 + f.sin() * 128.0) as u16;
*LEFT = SINE_BUF[*INDEX as usize] as u16;
*RIGHT = SINE_BUF[*INDEX as usize] as u16;
// if cx.scheduled.elapsed() > 1500.cycles() {
// panic!("task overrun");
// }
}
extern "C" {
fn EXTI0();
fn EXTI1();
fn EXTI2();
}
};
// We aim for a sampling rate of 48kHz, assuming that the input filter of the
// sound card used to sample the generated signal has an appropriate input filter
const PWM_CYCLES: u32 = 2000; // 96_000_000 / 2_000 = 48_000 Hz
const POLL_CYCLES: u32 = 96_000; // 96_000_000 / 96_000 = 1_000 Hz
//! examples/rtt-pwm-dma.rs
//! cargo run --examples rtt-pwm-dma
// #![deny(unsafe_code)]
// #![deny(warnings)]
#![no_main]
#![no_std]
use cortex_m::{asm, peripheral::DWT};
use panic_halt as _;
use rtt_target::{rprint, rprintln, rtt_init_print};
use stm32f4xx_hal::{bb, dma, gpio::Speed, prelude::*, pwm, stm32};
#[rtic::app(device = stm32f4xx_hal::stm32, peripherals = true)]
const APP: () = {
#[init]
fn init(mut cx: init::Context) {
rtt_init_print!();
rprintln!("init");
let dp = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
cx.core.DWT.enable_cycle_counter();
let rcc = dp.RCC.constrain();
// Set up the system clock. 48 MHz?
let clocks = rcc
.cfgr
// .use_hse(8.mhz())
.sysclk(48.mhz())
.pclk1(24.mhz())
.freeze();
let gpioa = dp.GPIOA.split();
// we set the pins to VeryHigh to get the sharpest waveform possible
// (rise and fall times should have similar characteristics)
let channels = (
gpioa.pa8.into_alternate_af1().set_speed(Speed::VeryHigh),
gpioa.pa9.into_alternate_af1().set_speed(Speed::VeryHigh),
);
// Setup PWM RAW
let tim1 = dp.TIM1;
// Here we need unsafe as we are "stealing" the RCC peripheral
// At this point it has been contrained into SysConf and used to set clocks
let rcc = unsafe { &(*stm32::RCC::ptr()) };
rcc.apb2enr.modify(|_, w| w.tim1en().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().clear_bit());
// Setup chanel 1 and 2 as pwm_mode1
tim1.ccmr1_output()
.modify(|_, w| w.oc1pe().set_bit().oc1m().pwm_mode1());
tim1.ccmr1_output()
.modify(|_, w| w.oc2pe().set_bit().oc2m().pwm_mode1());
// The reference manual is a bit ambiguous about when enabling this bit is really
// necessary, but since we MUST enable the preload for the output channels then we
// might as well enable for the auto-reload too
tim1.cr1.modify(|_, w| w.arpe().set_bit());
let clk = clocks.pclk2().0 * if clocks.ppre2() == 1 { 1 } else { 2 };
// check that its actually 48_000_000
rprintln!("clk {}", clk);
// we want maximum performance, thus we set the prescaler to 0
let pre = 0;
rprintln!("pre {}", pre);
tim1.psc.write(|w| w.psc().bits(pre));
// we want 8 bits of resolution
// so our ARR = 2^8 - 1 = 256 - 1 = 255
let arr = 255;
rprintln!("arr {}", arr);
tim1.arr.write(|w| unsafe { w.bits(arr) });
// Trigger update event to load the registers
tim1.cr1.modify(|_, w| w.urs().set_bit());
tim1.egr.write(|w| w.ug().set_bit());
tim1.cr1.modify(|_, w| w.urs().clear_bit());
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set output enable for channels 1 and 2
// Channel 1 (bit 0)
unsafe { bb::set(&tim1.ccer, 0) }
// Channel 4 (bit 0)
unsafe { bb::set(&tim1.ccer, 4) }
// Setup the timer
tim1.cr1.write(|w| {
w.cms()
.bits(0b00) // edge aligned mode
.dir() // counter used as upcounter
.clear_bit()
.opm() // one pulse mode
.clear_bit()
.cen() // enable counter
.set_bit()
});
// Setup TIMER2
let tim2 = dp.TIM2;
// Here we need unsafe as we are "stealing" the RCC peripheral
// At this point it has been contrained into SysConf and used to set clocks
let rcc = unsafe { &(*stm32::RCC::ptr()) };
rcc.apb1enr.modify(|_, w| w.tim2en().set_bit());
rcc.apb1rstr.modify(|_, w| w.tim2rst().set_bit());
rcc.apb1rstr.modify(|_, w| w.tim2rst().clear_bit());
// auto-reload, preload
tim1.cr1.modify(|_, w| w.arpe().set_bit());
let clk = clocks.pclk2().0 * if clocks.ppre2() == 1 { 1 } else { 2 };
// check that its actually 48_000_000
rprintln!("clk {}", clk);
// assume we have a sine at
let pre = 0;
rprintln!("pre {}", pre);
tim2.psc.write(|w| w.psc().bits(pre));
// we want 8 bits of resolution
// so our ARR = 2^8 - 1 = 256 - 1 = 255
let arr = 255;
rprintln!("arr {}", arr);
tim1.arr.write(|w| unsafe { w.bits(arr) });
// Trigger update event to load the registers
tim1.cr1.modify(|_, w| w.urs().set_bit());
tim1.egr.write(|w| w.ug().set_bit());
tim1.cr1.modify(|_, w| w.urs().clear_bit());
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set output enable for channels 1 and 2
// Channel 1 (bit 0)
unsafe { bb::set(&tim1.ccer, 0) }
// Channel 4 (bit 0)
unsafe { bb::set(&tim1.ccer, 4) }
// Setup the timer
tim1.cr1.write(|w| {
w.cms()
.bits(0b00) // edge aligned mode
.dir() // counter used as upcounter
.clear_bit()
.opm() // one pulse mode
.clear_bit()
.cen() // enable counter
.set_bit()
});
// Set duty cycle of Channels
tim1.ccr1.write(|w| unsafe { w.ccr().bits(128) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(128) });
// Set preload for the CCx
tim1.cr2.write(|w| w.ccpc().set_bit());
tim1.dier.write(|w| w.uie().enabled());
tim1.sr.modify(|_, w| w.uif().clear());
while tim1.sr.read().uif().is_clear() {
rprint!("-");
}
rprintln!("here");
tim1.sr.modify(|_, w| w.uif().clear());
let mut dma_buff = [0u8; 256];
for i in 0..256 {
dma_buff[i] = i as u8;
}
loop {
for i in 0..256 {
// wait until next update event
while tim1.sr.read().uif().is_clear() {}
tim1.sr.modify(|_, w| w.uif().clear());
tim1.ccr1
.write(|w| unsafe { w.ccr().bits(dma_buff[i] as u16) });
tim1.ccr2
.write(|w| unsafe { w.ccr().bits(dma_buff[i] as u16) });
}
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
};
//! examples/rtt-pwm-saw.rs
//! cargo run --examples rtt-pwm-saw
// #![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]
// use cortex_m::{asm, peripheral::DWT};
use panic_halt as _;
use rtt_target::{rprint, rprintln, rtt_init_print};
use stm32f4xx_hal::{bb, gpio::Speed, prelude::*, stm32};
#[rtic::app(device = stm32f4xx_hal::stm32, peripherals = true)]
const APP: () = {
#[init]
fn init(mut cx: init::Context) {
rtt_init_print!();
rprintln!("init");
let dp = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
cx.core.DWT.enable_cycle_counter();
let rcc = dp.RCC.constrain();
// Set up the system clock. 48 MHz?
let clocks = rcc
.cfgr
// .use_hse(8.mhz())
.sysclk(48.mhz())
.pclk1(24.mhz())
.freeze();
let gpioa = dp.GPIOA.split();
// we set the pins to VeryHigh to get the sharpest waveform possible
// (rise and fall times should have similar characteristics)
let _channels = (
gpioa.pa8.into_alternate_af1().set_speed(Speed::VeryHigh),
gpioa.pa9.into_alternate_af1().set_speed(Speed::VeryHigh),
);
// Setup PWM RAW
let tim1 = dp.TIM1;
// Here we need unsafe as we are "stealing" the RCC peripheral
// (At this point it has been constrained into SysConf and used to set clocks.)
let rcc = unsafe { &(*stm32::RCC::ptr()) };
// unsafe {
// bb::set(&rcc.apb2enr, 0u8);
// bb::set(&rcc.apb2rstr, 0u8);
// bb::clear(&rcc.apb2rstr, 0u8);
// }
//
// For some reason bb:: hangs target in release mode,
// so I implemented it using modify instead
rcc.apb2enr.modify(|_, w| w.tim1en().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().clear_bit());
// Setup chanel 1 and 2 as pwm_mode1
tim1.ccmr1_output()
.modify(|_, w| w.oc1pe().set_bit().oc1m().pwm_mode1());
tim1.ccmr1_output()
.modify(|_, w| w.oc2pe().set_bit().oc2m().pwm_mode1());
// The reference manual is a bit ambiguous about when enabling this bit is really
// necessary, but since we MUST enable the preload for the output channels then we
// might as well enable for the auto-reload too
tim1.cr1.modify(|_, w| w.arpe().set_bit());
let clk = clocks.pclk2().0 * if clocks.ppre2() == 1 { 1 } else { 2 };
// check that its actually 48_000_000
rprintln!("clk {}", clk);
// we want maximum performance, thus we set the prescaler to 0
let pre = 0;
rprintln!("pre {}", pre);
tim1.psc.write(|w| w.psc().bits(pre));
// we want 8 bits of resolution
// so our ARR = 2^8 - 1 = 256 - 1 = 255
let arr = 255;
rprintln!("arr {}", arr);
tim1.arr.write(|w| unsafe { w.bits(arr) });
// Trigger update event to load the registers
tim1.cr1.modify(|_, w| w.urs().set_bit());
tim1.egr.write(|w| w.ug().set_bit());
tim1.cr1.modify(|_, w| w.urs().clear_bit());
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set output enable for channels 1 and 2
// Channel 1 (bit 0)
unsafe { bb::set(&tim1.ccer, 0) }
// Channel 4 (bit 0)
unsafe { bb::set(&tim1.ccer, 4) }
// Setup the timer
tim1.cr1.write(|w| {
w.cms()
.bits(0b00) // edge aligned mode
.dir() // counter used as upcounter
.clear_bit()
.opm() // one pulse mode
.clear_bit()
.cen() // enable counter
.set_bit()
});
// Set duty cycle of Channels
tim1.ccr1.write(|w| unsafe { w.ccr().bits(128) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(128) });
// Set preload for the CCx
tim1.cr2.write(|w| w.ccpc().set_bit());
tim1.dier.write(|w| w.uie().enabled());
tim1.sr.modify(|_, w| w.uif().clear());
while tim1.sr.read().uif().is_clear() {
rprint!("-");
}
rprintln!("here");
tim1.sr.modify(|_, w| w.uif().clear());
loop {
for i in 0..256 {
// wait until next update event
while tim1.sr.read().uif().is_clear() {}
tim1.sr.modify(|_, w| w.uif().clear());
tim1.ccr1.write(|w| unsafe { w.ccr().bits(i) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(i) });
}
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
loop {
continue;
}
}
};
//! examples/rtt-pwm-sine.rs
//! cargo run --examples rtt-pwm-sine --release
// #![deny(unsafe_code)]
// #![deny(warnings)]
#![no_main]
#![no_std]
// use core::f32::consts::PI;
use cortex_m::{asm, peripheral::DWT};
// use panic_halt as _;
use panic_rtt_target as _;
use rtic::cyccnt::{Instant, U32Ext as _};
use rtt_target::{rprint, rprintln, rtt_init_print};
use core::f32::consts::PI;
use micromath::F32Ext;
use stm32f4xx_hal::{bb, gpio::Speed, prelude::*, pwm, stm32};
include!(concat!(env!("OUT_DIR"), "/sin_abs_const.rs"));
#[rtic::app(device = stm32f4xx_hal::stm32, monotonic = rtic::cyccnt::CYCCNT, peripherals = true)]
const APP: () = {
struct Resources {
// late resources
TIM1: stm32::TIM1,
}
#[init(schedule = [pwm_out])]
fn init(mut cx: init::Context) -> init::LateResources {
rtt_init_print!();
rprintln!("init");
let dp = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
cx.core.DWT.enable_cycle_counter();
let rcc = dp.RCC.constrain();
// Set up the system clock. 48 MHz?
let clocks = rcc
.cfgr
// .use_hse(8.mhz())
// .sysclk(48.mhz())
.sysclk(96.mhz())
.pclk1(24.mhz())
.freeze();
let gpioa = dp.GPIOA.split();
// we set the pins to VeryHigh to get the sharpest waveform possible
// (rise and fall times should have similar characteristics)
let _channels = (
gpioa.pa8.into_alternate_af1().set_speed(Speed::VeryHigh),
gpioa.pa9.into_alternate_af1().set_speed(Speed::VeryHigh),
);
// Setup PWM RAW
let tim1 = dp.TIM1;
// Here we need unsafe as we are "stealing" the RCC peripheral
// At this point it has been contrained into SysConf and used to set clocks
let rcc = unsafe { &(*stm32::RCC::ptr()) };
rcc.apb2enr.modify(|_, w| w.tim1en().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().set_bit());
rcc.apb2rstr.modify(|_, w| w.tim1rst().clear_bit());
// Setup chanel 1 and 2 as pwm_mode1
tim1.ccmr1_output()
.modify(|_, w| w.oc1pe().set_bit().oc1m().pwm_mode1());
tim1.ccmr1_output()
.modify(|_, w| w.oc2pe().set_bit().oc2m().pwm_mode1());
// The reference manual is a bit ambiguous about when enabling this bit is really
// necessary, but since we MUST enable the pre-load for the output channels then we
// might as well enable for the auto-reload too
tim1.cr1.modify(|_, w| w.arpe().set_bit());
let clk = clocks.pclk2().0 * if clocks.ppre2() == 1 { 1 } else { 2 };
// check that its actually 48_000_000
rprintln!("clk {}", clk);
// we want maximum performance, thus we set the prescaler to 0
let pre = 0;
rprintln!("pre {}", pre);
tim1.psc.write(|w| w.psc().bits(pre));
// we want 8 bits of resolution
// so our ARR = 2^8 - 1 = 256 - 1 = 255
let arr = 255;
rprintln!("arr {}", arr);
tim1.arr.write(|w| unsafe { w.bits(arr) });
// Trigger update event to load the registers
tim1.cr1.modify(|_, w| w.urs().set_bit());
tim1.egr.write(|w| w.ug().set_bit());
tim1.cr1.modify(|_, w| w.urs().clear_bit());
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set output enable for channels 1 and 2
tim1.ccer.write(|w| w.cc1e().set_bit().cc2e().set_bit());
// Setup the timer
tim1.cr1.write(|w| {
w.cms()
.bits(0b00) // edge aligned mode
.dir() // counter used as up-counter
.clear_bit()
.opm() // one pulse mode
.clear_bit()
.cen() // enable counter
.set_bit()
});
// Set main output enable of all Output Compare (OC) registers
tim1.bdtr.modify(|_, w| w.moe().set_bit());
// Set duty cycle of Channels
tim1.ccr1.write(|w| unsafe { w.ccr().bits(128) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(128) });
// Set preload for the CCx
tim1.cr2.write(|w| w.ccpc().set_bit());
// Enable update events
tim1.dier.write(|w| w.uie().enabled());
tim1.sr.modify(|_, w| w.uif().clear());
// Set divider to 4, (48_000_000/256)/4
// tim1.rcr.modify(|_, w| unsafe { w.rep().bits(4) });
while tim1.sr.read().uif().is_clear() {
rprint!("-");
}
rprintln!("here");
tim1.sr.modify(|_, w| w.uif().clear());
// pass on late resources
cx.schedule.pwm_out(cx.start + PERIOD.cycles()).ok();
init::LateResources { TIM1: tim1 }
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("idle");
// panic!("panic");
loop {
continue;
}
}
#[task(resources = [TIM1], schedule = [pwm_out])]
fn pwm_out(cx: pwm_out::Context) {
static mut INDEX: u16 = 0;
static mut LEFT: u16 = 0;
static mut RIGHT: u16 = 0;
static mut FLOAT: u16 = 0;
let tim1 = cx.resources.TIM1;
tim1.ccr1.write(|w| unsafe { w.ccr().bits(*LEFT) });
// tim1.ccr2.write(|w| unsafe { w.ccr().bits(*RIGHT) });
tim1.ccr2.write(|w| unsafe { w.ccr().bits(*FLOAT) });
*INDEX = (*INDEX).wrapping_add(10_000);
let f: f32 = (*INDEX as f32 * 2.0 * PI) / 65536.0;
*FLOAT = (128.0 + f.sin() * 128.0) as u16;
cx.schedule.pwm_out(cx.scheduled + PERIOD.cycles()).ok();
*LEFT = SINE_BUF[*INDEX as usize] as u16;
*RIGHT = SINE_BUF[*INDEX as usize] as u16;
if cx.scheduled.elapsed() > 500.cycles() {
panic!("task overrun");
}
}
extern "C" {
fn EXTI0();
}
};
// We aim for a sampling rate of 48kHz, assuming that the input filter of the
// sound card used to sample the generated signal has an appropriate input filter
const PERIOD: u32 = 2000; // 96_000_000 / 48_000;
This diff is collapsed.
This diff is collapsed.
//! examples/rtt_timing.rs
//! cargo run --examples rtt-pwm
#![deny(unsafe_code)]
// #![deny(warnings)]
#![deny(warnings)]
#![no_main]
#![no_std]
use cortex_m::{asm, peripheral::DWT};
use panic_halt as _;
use rtt_target::{rprintln, rtt_init_print};
use stm32f4xx_hal::{dma, gpio::Speed, prelude::*, pwm, stm32};
use stm32f4xx_hal::{gpio::Speed, prelude::*, pwm};
#[rtic::app(device = stm32f4xx_hal::stm32, peripherals = true)]
const APP: () = {
#[init]
fn init(mut cx: init::Context) {
fn init(cx: init::Context) {
rtt_init_print!();
rprintln!("init");
let dp = cx.device;
// Initialize (enable) the monotonic timer (CYCCNT)
cx.core.DCB.enable_trace();
cx.core.DWT.enable_cycle_counter();
// Set up the system clock. 16 MHz?
let rcc = dp.RCC.constrain();
let clocks = rcc.cfgr.freeze();
let gpioa = dp.GPIOA.split();
let channels = (
gpioa.pa8.into_alternate_af1().set_speed(Speed::Low),
gpioa.pa9.into_alternate_af1(),
gpioa.pa8.into_alternate_af1().set_speed(Speed::High),
gpioa.pa9.into_alternate_af1().set_speed(Speed::High),
);
let pwm = pwm::tim1(dp.TIM1, channels, clocks, 1u32.khz());
......@@ -39,7 +33,7 @@ const APP: () = {
rprintln!("max_duty {}", max_duty);
ch1.set_duty(max_duty / 2);
ch1.enable();
ch2.set_duty((max_duty * 1) / 2);
ch2.set_duty((max_duty * 1) / 3);
ch2.enable();
}
......
//! examples/rtt_timing.rs
//! cargo run --examples rtt-timing
#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]
......
This diff is collapsed.
// cargo run --example rtt_rtic_hello
#![no_main]
#![no_std]
use panic_halt as _;
use rtt_target::{rprintln, rtt_init_print};
use stm32f4;
#[rtic::app(device = stm32f4)]
const APP: () = {
#[init]
fn init(_cx: init::Context) {
rtt_init_print!();
for i in 0..11 {
rprintln!("RTIC Says Hello, world {}!!", i);
}
}
#[idle]
fn idle(_cx: idle::Context) -> ! {
rprintln!("lets get lazy");
loop {
continue;
}
}
};
This diff is collapsed.